Allograft reconstruction after resection of primary bone sarcomas has a non-union rate of approximately 20%. Achieving a wide surface area of contact between host and allograft bone is one of the most important factors to help reduce the non-union rate. We developed a novel technique of haptic robot-assisted surgery to reconstruct bone defects left after primary bone sarcoma resection with structural allograft. Using a sawbone distal femur joint-sparing hemimetaphyseal resection/reconstruction model, an identical bone defect was created in six sawbone distal femur specimens. A tumor-fellowship trained orthopedic surgeon reconstructed the defect using a simulated sawbone allograft femur. First, a standard, ‘all-manual’ technique was used to cut and prepare the allograft to best fit the defect. Then, using an identical sawbone copy of the allograft, the novel haptic-robot technique was used to prepare the allograft to best fit the defect. All specimens were scanned via CT. Using a separately validated technique, the surface area of contact between host and allograft was measured for both (1) the all-manual reconstruction and (2) the robot-assisted reconstruction. All contact surface areas were normalized by dividing absolute contact area by the available surface area on the exposed cut surface of host bone.INTRODUCTION
METHODS
Introduction. Innovations in surgical robotics and navigation have significantly improved implant placement accuracy in total knee arthroplasty (TKA). However, many comparative studies have not been shown to substantially improve revision rates or other clinical outcome scores. We conducted a simulation study based on the reported distribution of patient-specific characteristics and estimated potential effect of coronal plane alignment (CPA) on risk of revision to evaluate the hypothesis that most published study designs in this area have been too underpowered to detect improvements in revision rates. Methods. To model previously reported studies, we generated a series of simulated TKA patient populations, assigning each patient a set of patient-specific factors (age at index surgery, BMI, and sex (Fig.1a)), as well as one surgeon-controlled factor (CPA) (Fig.1b) based on registry data and published literature. We modelled the survival probability for an individual patient at time t as a Gaussian function (exp[-(t/(k∗τ. max. )). 2. ]), where τ. max. (99.5 years) is selected to ensure the mean survival probability of the patient population matched 92% at 15 years. The value of k was adjusted for simulated patients within a range of 0 to 1 as a function of their patient and surgeon-specific factors (Fig.2). To evaluate power associated with a study design, we ran a Monte Carlo simulation generating 10,000 simulated populations of ten different cohort sizes. We divided the patient population into two groups: one group was assigned CPAs governed by the precision of a navigated/robotic approach (σ=1.5°), and the other CPAs governed by the precision of a conventional approach (σ=3°). We then simulated the time to failure for each patient, computed the corresponding Kaplan-Meier survival curves, and applied a Log-Rank test to each study to test for statistical difference. From the 10,000 simulations associated with each cohort size, we determined the percentage of simulated studies that found a statistically significant difference at each time point. Results. Figure 3 shows a contour plot illustrating the probability that a survival analysis with a specific study design would find statistical significance between the conventional and navigated/robotic patient groups. Entries from recently published literature are overlaid for context. No studies achieved statistical significance (p<0.05). Discussion. The effectiveness of navigated/
Robotic surgical systems reduce the cognitive workload of the surgeon by assisting in guidance and operational tasks. As a result, higher precision and a decreased surgery time are achieved, while human errors are minimised. However, most of robotic systems are expensive, bulky and limited to specific applications. In this paper a novel semi-automatic robotic system is evaluated, that offers the high accuracies of
Total knee arthroplasty is a successful procedure with good long-term results. Studies indicate that 15% – 25% of patients are dissatisfied with their total knee arthroplasty. In addition, return to sports activities is significantly lower than total hip arthroplasty with 34% – 42% of patients reporting decreased sports participation after their total knee arthroplasties. Poor outcomes and failures are often associated with technical errors. These include malalignment and poor ligament balancing. Malalignment has been reported in up to 25% of all revision knee arthroplasties, and instability is responsible for over 20% of failures. Most studies show that proper alignment within 3 degrees is obtained in only 70% – 80% of cases. Navigation has been shown in many studies to improve alignment. In 2015, Graves examined the Australian Joint Registry and found that computer navigated total knee arthroplasty was associated with a reduced revision rate in patients under 65 years of age. Navigation can improve alignment, but does not provide additional benefits of ligament balance. Robotic-assisted surgery can assist in many of the variables that influence outcomes of total knee arthroplasty including: implant positioning, soft tissue balance, lower limb alignment, proper sizing. The data on robotic-assisted unicompartmental arthroplasty is quite promising. Cytech showed that femoral and tibial alignment were both significantly more accurate than manual techniques with three times as many errors with the manually aligned patients. Pearle, et al. compared the cumulative revision rate at two years and showed this rate was significantly lower than data reported in most unicompartmental series, and lower revision rates than both Swedish and Australian registries. He also showed improved satisfaction scores at two years. Pagnano has noted that optimal alignment may require some deviation from mechanically neutral alignment and individualization may be preferred. This is also likely to be a requirement of more customised or bi-cruciate retaining implant designs. The precision of
Knee OA affects more frequently both joints. The involvement of the medial compartment involves an axis deviation of both limbs. The solution allows unicompartmental prosthetic restoration of articular defect and the axis of the patient's physiological load. Many studies have shown that the simultaneous prosthetic solution, compared to excellent results as regards the functional rehabilitation, increases the perioperative risks. Our experience with
Treatment of osteoarthritis of the knee remains a challenging problem since the evolution of the disease may be different in each compartment of the knee, as well as the state of the ligaments. Total knee arthroplasty may provide a reliable long-lasting option but do not preserve the bone stock. In another hand, compartmental arthroplasty is a bone and ligament sparing solution to manage limited osteoarthritis of the knee affecting the medial, lateral or the patello-femoral compartment.1, 2, 3. Patient's selection and surgical indication are based on the physical examination and on the radiological analysis including full-length x-rays and stress x-rays. Clinical experience has shown the need for high flexion in patients who have both high flexibility and a desire to perform deep flexion. Additionally the shape differences related to anatomy or the patient expectations after the surgery may also affect the surgeon decision. 4. The limited incision into the extensor mechanism allows a quicker recovery which represents a functional improvement for the patient additionally to the cosmetic result. A dedicated physiotherapy starting on the following day allowing weight bearing exercises protected by crutches and focusing on early mobilization and range of motion combined to a multimodal pain management approach is critical despite the type of individualized solution chosen for the patient knee. 5. Since bony landmarks may be different form a patient to another one as well as anatomical shapes, several tools have been developed in order to provide the surgeons an assisted tool during the surgery adapted to each knee, this include navigation, patient specific instrumentation and
Introduction and aims. The International Orthopaedic community is eagerly adopting Robotic Assisted Arthroplasty (RAA) technology. However, the evidence for the benefits of this technology are unproven and at best equivocal. This study is a comprehensive bibliometric analysis of all published research in the field of RAA. Methods. A systematic literature search was conducted to retrieve all peer-reviewed, English language, publications studying robot- assisted hip and knee arthroplasty between 1992 and 2017. Review articles were excluded. Articles were classified by type of study and level of evidence according to the Oxford Centre for Evidence-based Medicine (OCEBM) Levels of Evidence System. The number of citations, authorship, year of publication, journal of publication, and country and institution of origin were also recorded for each publication. Results. We identified 73 original studies published since 1992 in the field of RAA. The procedures reported were total hip and total knee replacement, and uni-compartmental knee replacement. Publications originated from 17 countries and 117 organisations. Fifty percent of studies identified were published in the last 5 years at an average of 7 publications per year, compared to an average of 2.7 publications per year from 1992 to 2012. Thirty-six percent of original studies were of level 5 evidence or below, with a preponderance of biomechanical and cadaveric studies. The most cited paper was Bargar, Bauer and Borner's original RCT proving efficacy and safety of the Robodoc system for total hip replacement. Most publications originated in the US (36.9%) and more than 15% were published in the Journal of Arthroplasty. Conclusions. Analysis of publication patterns in
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Materials & Methods. In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of Navigation and Robotics in Orthopaedic surgery. Participation in the survey was voluntary. Results. 98 patients volunteered to participate in the survey, mean age 56.2 years (range 19–88; 52 female, 46 male). 40% of patients thought more than 30% of NHS Orthopaedic operations involved navigation or robotics; 80% believed this was the same level or less than the private sector. A third believed most of an operation could be performed independently by a robotic/navigation system. Amongst perceived benefits of navigation/
Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Materials and methods. In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of Navigation and Robotics in Orthopaedic surgery. Participation in the survey was voluntary. Results. 98 patients volunteered to participate in the survey, mean age 56.2 years (range 19–88; 52 female, 46 male). 40% of patients believed more than 30% of NHS Orthopaedic operations involved navigation or robotics; 80% believed this was the same level or less than the private sector. A third believed most of an operation could be performed independently by a robotic/navigation system. Amongst perceived benefits of navigation/
INTRODUCTION:. Unicompartmental knee replacement (UKR) facilitates the use of smaller sized implants that require less bone resection and allows preservation of the anterior and posterior cruciate ligaments (ACL and PCL)[1]. Therefore, UKR preserves the intact kinematics and may improve the clinical outcomes especially compared to the outcomes of total knee replacement (TKA). Despite the known benefits of UKR in arthritis limited to one compartment, in multicompartment disease TKA remains the gold standard. Current TKA designs require the sacrifice of the ACL in all cases, whereas the surgeon can decide to use a cruciate sparing or substituting design altering normal knee kinematics. Performing bi-UKR or tri-UKR with traditional instruments is very challenging and rarely done due to the difficulty in establishing the correct spatial relationship of the separate components. Recent advances in
Introduction. Many uncemented femoral implant designs have had successful outcomes in total hip arthroplasty (THA). Different uncemented stem designs achieve initial and long term stability through shape, size, coating and fit. There is increasing emphasis on bone preservation, particularly in younger and more active patients. The desire to optimize load transfer has led to the development of short stems that seek to achieve fixation in the proximal femur. Short stems designed to achieve stability by engaging the metaphysis or the proximal femoral necks are currently in clinical use. The purpose of this study was to examine the extent to which five stems designed to achieve proximal fixation contact the bone in the proximal femur. Using three-dimensional CT models of 30 femurs, we assessed the fit, fill and contact of each of the five different implants. Methods. Using three-dimensional computerized templating software designed to navigate
Background:. Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based
Navigation has been felt to play a role in a number of THA issues. These issues include: 1) Instability-Dislocation; 2) Leg Length discrepancy; 3) Impingement and its impact on range of motion and wear; 3) gait mechanics; and 4) less invasive surgery. Navigation requires that anatomic landmarks be accurately identified. This can be done using images obtained either pre-operatively or intra-operatively (image-based navigation) or using intra-operative techniques for registering the relevant bony anatomy (image-free). The suggested advantages of imaged-based navigation are that is potentially very accurate, makes registering bone landmarks relatively easy and provides information about relevant anatomic landmarks that are not visible during surgery. The disadvantages of image-based navigation are that the acquisition of pre-operative imaging may be inconvenient or cumbersome, the imaging may be associated with increased radiation exposure, the imaging may be associated with additional costs and the pre-operative planning carried out on the imaging may be elaborate and time consuming. The advantages of image-free navigation are that no special pre-operative planning is required, no special imaging is necessary and the intra-operative workflow is consistent with the routine performance of a THA. However, image free registration techniques may be unreliable or inaccurate and the information obtained with image-free registration techniques is limited. When surgeons proficient in the technique perform image free navigation, positioning of the acetabular component is more accurate and consistent than that achieved using manual techniques. However, this increased accuracy has not been associated with a reduction in hip dislocations and has not had a measurable impact on short-term clinical outcomes. However, navigation is an accurate measurement tool that can be used to validate other computer-based technologies (e.g. patient specific guides). Navigation is also essential to the performance of
The use of robots in orthopaedic surgery is an
emerging field that is gaining momentum. It has the potential for significant
improvements in surgical planning, accuracy of component implantation
and patient safety. Advocates of robot-assisted systems describe
better patient outcomes through improved pre-operative planning
and enhanced execution of surgery. However, costs, limited availability,
a lack of evidence regarding the efficiency and safety of such systems
and an absence of long-term high-impact studies have restricted
the widespread implementation of these systems. We have reviewed
the literature on the efficacy, safety and current understanding of
the use of robotics in orthopaedics. Cite this article: