Abstract
INTRODUCTION:
Unicompartmental knee replacement (UKR) facilitates the use of smaller sized implants that require less bone resection and allows preservation of the anterior and posterior cruciate ligaments (ACL and PCL)[1]. Therefore, UKR preserves the intact kinematics and may improve the clinical outcomes especially compared to the outcomes of total knee replacement (TKA). Despite the known benefits of UKR in arthritis limited to one compartment, in multicompartment disease TKA remains the gold standard. Current TKA designs require the sacrifice of the ACL in all cases, whereas the surgeon can decide to use a cruciate sparing or substituting design altering normal knee kinematics. Performing bi-UKR or tri-UKR with traditional instruments is very challenging and rarely done due to the difficulty in establishing the correct spatial relationship of the separate components. Recent advances in robotic surgery have provided the opportunity to utilize partial knee replacements. The MAKO Rio platform is a surgeon-interactive robotic arm with haptic guidance that allows computer assisted planning and intraoperative accurate placement of multiple unicompartmental components including the bi-UKR. Currently there is a lack of understanding about the short-term and long-term clinical outcomes of the bi-UKR compared to the traditional TKA.
OBJECTIVES:
The objective of the current study was to investigate the differences in the clinical outcomes of bi-UKR and TKA.
METHODS:
In the current study the clinical outcomes of the patients in three groups were obtained who were operated by the same surgeon. Table-1 shows the demographics of the participants. All patients were evaluated via Knee Injury Osteoarthritis Outcome Score (KOOS) and the scores were compared to reported scores from standard TKA. One-way ANOVA was performed to determine significance within demographics. The signed consent was obtained from each participant.
RESULTS:
Post-operative data were collected at a mean followup time of 12.3 months. The results indicated higher KOOS in individuals in group-1 compared to TKA individuals. No intraoperative complications during implantation were noted for the bi-UKR group. At the latest followup, no revision surgery was required for any of the subjects.
CONCLUSION:
Our experience with the bi-UKR has shown promising clinical outcomes with no post-operative complications. These outcomes may be explained by the less invasive nature of bi-UKR surgeries that preserves of the integrity of the both the ACL and PCL ligaments. Additionally, there is a more accurate joint line reconstruction compared to TKA which may reproduce the functional capabilities of the intact knee more closely. Considering these advantages in addition to preservation of bone and less soft tissue destruction, robotically assisted multi-compartment knee replacement may be a viable alternative treatment in select patients.