Biomaterials with mechanical or biological competence are ubiquitous in musculoskeletal disorders, and understanding the inflammatory response they trigger is key to guide tissue regeneration. While macrophage role has been widely investigated, immune response is regulated by other immune cells, including neutrophils, the most abundant leukocyte in human blood. As first responders to injury, infection or material implantation, neutrophils recruit other immune cells, and therefore influence the onset and resolution of chronic inflammation, and macrophage polarization. This response depends on the physical and chemical properties of the biomaterials, among other factors. In this study we report an in vitro culture model to describe the most important neutrophil functions in relation to tissue repair. We identified neutrophil survival and death, neutrophils extracellular trap formation, release of
Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co. 2+. and Co-NPs on liver cells, and explain further the potential mechanisms. Methods. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms,
Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities,
Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions,
Chondrocytic activity is downregulated by compromised autophagy and mitochondrial dysfunction to accelerate the development of osteoarthritis (OA). Irisin is a cleaved form of fibronectin type III domain containing 5 (FNDC5) and known to regulate bone turnover and muscle homeostasis. However, little is known about the role of irisin in chondrocytes and the development of OA. This talk will shed light on FNDC5 expression by human articular chondrocytes and compare normal and osteoarthritic cells with respect to autophagosome marker LC3-II and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG). In chondrocytes in vitro, irisin improves IL-1β-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production. Irisin further suppressed Sirt3 and UCP- 1 to improve mitochondrial membrane potential, ATP production, and catalase. This attenuated IL-1β-mediated production of
Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular
Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development. Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining. Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce
Stem cells are known to have low levels of intracellular
Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Methods. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed. Results. Exposure to TA significantly decreased cell viability and changed the cell morphology; these effects were prevented by the simultaneous administration of PRP. Compared with the control group, expression levels of inflammatory genes and
Introduction and Objective. Hyaluronic acid (HA) is an effective option for the treatment of osteoarthritis (OA) patients due to several properties such as normalization of the mechanical and rheological properties of the synovial fluid and amelioration of OA symptoms and joints function by promoting cartilage nutrition. Since OA progression is also significantly related to oxidative stress and
The human amniotic membrane (hAM) contains cells of stem cell characteristics with low immunogenicity and anti-inflammatory properties and has for centuries been applied in the clinics especially for ophthalmology and wound care. It has recently been shown to be promising for novel applications such as tissue engineering and regenerative medicine. Towards these novel applications, we have demonstrated the potential of hAM in toto to differentiate towards bone, cartilage, Schwann like cells and recently also a producer of surfactant. We have further investigated the relevance of the location of origin for the therapeutic potential of the membrane. We show that placental and reflected hAM differs distinctly in morphology and functional activity. The placental region has significantly higher mitochondrial activity, however lower levels of
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However, to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as
Cartilage injury is generally associated with cytokine release and accumulation of
Healthcare associated infections (HAI) pose a major threat to patients admitted to hospitals, and infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery. 405 nm High-Intensity Narrow Spectrum (HINS) light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in orthopaedic surgery. Cultured rat osteoblasts were exposed to 405 nm light to investigate if bactericidal doses of light could be used safely in the presence of mammalian cells. Cell viability was measured by MTT reduction and microscopy techniques, function by alkaline phosphatase activity, and proliferation by the BrdU assay. Exposures of up to a dose of 36 J/cm. 2. had no significant effect on osteoblast cell viability, whilst exposure of a variety of clinically relevant bacteria, to 36 J/cm. 2. resulted in up to 100% kill. Exposure to a higher dose of 54 J/cm. 2. significantly affected the osteoblast cell viability, indicating dose dependency. Work also demonstrated that 405 nm light exposure induces
Osteosarcoma (OS) is a highly malignant primary tumor frequently occurring in children and adolescents. The mainstay of therapy is neoadjuvant chemotherapy and surgical removal of the lesion yielding a 50–70% of 5-year survival rate. Unfortunately, chemotherapy is currently unable to induce complete tumor necrosis leaving residual tumor cells free to metastasize or recidivate, thus resulting in a 30% mortality. The major limitation in those patients is the development of multidrug resistance (MDR) and the low water solubility of drugs such as Paclitaxel (PTX) that is in fact not included in the majority of chemotherapy protocols for OS treatment. We thus hypothesized to prevent the emergence of MDR and obtain significant tumor reduction, by engineering innovative nanoparticles (NPs) able to vehiculate the PTX and induce a dual synergic action: the cytostatic effect of PTX and the cytotoxicity generated by
Summary Statement. Ischaemic preconditioning protected skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection was associated with increased Nrf2 signalling. Introduction. Ischaemic preconditioning (IPC) is a well recognised and powerful phenomenon where a tissue becomes more tolerant to a period of prolonged ischaemia when it is first subjected to short bursts of ischaemia/reperfusion. While much is known about the ability of ischaemic preconditioning to protect myocardial tissue against ischaemia-reperfusion injury, its potential to confer benefit in an orthopaedic setting by protecting skeletal muscle remains relatively unexplored to date. One mechanism by which ischaemic preconditioning may induce protection is through a reduction in oxidative stress.
Summary Statement. The incidence of osteonecrosis was significantly lower in the anti-vasospasm agent group (32%) than that in the control group (75%). Vasospasm is one of the important factors involved in the pathogenesis of steroid-induced osteonecrosis. Introduction. A number of studies have suggested that ischemia is the principal pathomechanism of osteonecrosis, however, the detailed mechanism responsible for ischemia remains unclear. It has recently been reported that the Rho/Rho-kinase mediated pathway (Rho-kinase pathway) is considered to be involved in the possible pathogenesis of various cardiovascular disorders as well as cerebral vasospasm. We examined the effects of fasudil (Rho-kinase inhibitor), an anti-vasospasm agent, on the development of steroid-induced osteonecrosis in rabbits. Materials & Methods. One group of rabbits received 15 mg/kg of fasudil intravenously, which were then injected once intramuscularly with 20 mg/kg of methylprednisolone (n = 33, MF group), and one received methylprednisolone alone as a control (n = 28, M group). Eight rabbits from each group were sacrificed 24 hour after the methylprednisolone injection to analyze them by immunohistochemical staining, a Western blotting analysis. Two weeks after the steroid injection, the femora and humeri were examined histopathologically for the incidence of osteonecrosis. Results. The incidence of osteonecrosis was significantly lower in the MF group (32%) than that in the M group (75%) (P < 0.01). Immunohistochemically, endothelin. A. -receptor (ET. A. Rc) expressions levels were decreased in the smooth muscle of the bone marrow in the MF group in comparison to that in the M group. In the M group, the average relative phospho-myosin light chain (p-MLC) expression level in the bone marrow tissue was significantly higher than that observed in the MF group (P < 0.01). In the MF group, the average relative total-eNOS expression level as well as the average relative phospho-eNOS (p-eNOS) expression level was almost 1.5 times higher than that observed in the M group (P < 0.05). The eNOS expressions levels in both serum and bone marrow in the MF group were significantly higher than those in the M group (P < 0.05). Discussion/Conclusion. The potential mechanisms resulting in vasospasm include the increased release of vasoconstrictors or increased sensitivity to these vasoconstrictors. ET-1 has been demonstrated to cause vascular smooth muscle cell constriction via ET. A. Rc stimulation. The expression of ET. A. Rc in rabbits treated with methylprednisolone plus fasudil (MF group) decreased in comparison with that in rabbits treated with the methylprednisolone alone (M group). In this study, both the eNOS and p-eNOS expressions levels in the M group were decreased in comparison to those observed in the MF group. A previous study suggested that high-dose steroid administration causes the overproduction of
Summary Statement. A novel transcutaneous CO. 2. therapy significantly enhanced the antitumor effectiveness of X-ray irradiation in human MFH xenografts The results strongly suggest that transcutaneous CO. 2. therapy could be a novel therapeutic tool for overcoming radioresistance in human malignancies. Introduction. Hypoxia contributes to tumor radioresistance. In the presence of
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Objectives
Materials and Methods