header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



8th Combined Meeting Of Orthopaedic Research Societies (CORS)


Summary Statement

Ischaemic preconditioning protected skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection was associated with increased Nrf2 signalling.


Ischaemic preconditioning (IPC) is a well recognised and powerful phenomenon where a tissue becomes more tolerant to a period of prolonged ischaemia when it is first subjected to short bursts of ischaemia/reperfusion. While much is known about the ability of ischaemic preconditioning to protect myocardial tissue against ischaemia-reperfusion injury, its potential to confer benefit in an orthopaedic setting by protecting skeletal muscle remains relatively unexplored to date.

One mechanism by which ischaemic preconditioning may induce protection is through a reduction in oxidative stress. Reactive oxygen species (ROS) are generated both during prolonged ischaemia and also upon reperfusion by infiltrating neutrophils, thereby leading to an increase in oxidative stress. The transcription factor, NF-E2-related factor 2 (Nrf2), is a key regulator of the cells response to oxidative stress as it regulates the expression of a network of anti-oxidant/detoxifying enzymes. Nrf2 signalling has recently been shown to protect against ischaemia-reperfusion injury in both a kidney cell line and in liver biopsies, indicating that this transcription factor may play a key role in the protection provided by ischaemic preconditioning. To date, the involvement of Nrf2 in the response of skeletal muscle to ischaemia-reperfusion has not been investigated. Thus, the aims of this study were to investigate the ability of ischaemic preconditioning to protect skeletal myotubes against ischaemia-reperfusion and to determine the role of Nrf2 signalling in this protection.

Materials & Methods

C2C12 mouse myoblasts were maintained at 37oC in a humidified atmosphere of 95% air and 5% CO2 in DMEM containing 20% FBS. When cultures were approximately 90% confluent, myoblasts were differentiated to myotubes by changing to DMEM supplemented with 2% horse serum and culturing for 7–10 days. Differentiated myotubes were then exposed to simulated ischaemia for 4h (1% O2) followed by 2h reoxygenation (21% O2). To precondition myotubes, cells were subjected to 30 min of simulated ischaemia followed by 1 hour reoxygenation prior to the prolonged ischaemic event. Cell survival was assessed by lactate dehydrogenase release. Changes in Nrf2 expression were assessed using real-time PCR, Western blotting and immunofluorescence. Changes in sequestosome-1 (SQSTM1), catalase (CAT), glutathione S-transferase theta-1 (GSTT1), heme oxygenase-1 (HO-1) expression were assessed using a combination of real-time PCR and Western blotting.


Preconditioned myotubes showed greater viability both after 4h of ischaemia, and after 4h ischaemia followed by 2h of reoxygenation. This increase in cell viability was associated with increased Nrf2 expression. In addition, increased expression of SQSTM1, and the antioxidant enzymes, CAT, GSTT1 and HO-1 was observed in preconditioned myotubes.


Our findings indicate that ischaemic preconditioning can protect skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection is associated with increased Nrf2 signalling indicating that this transcription factor may play a role in mediating the protection induced by ischaemic preconditioning. By modulating the response of skeletal muscle to ischaemia, ischaemic preconditioning has the potential to limit reperfusion injury, which in turn, may lead to improvements in outcome following orthopaedic surgery.