Orthopaedics has been left behind in the worldwide drive towards diversity and inclusion. In the UK, only 7% of orthopaedic consultants are female. There is growing evidence that diversity increases innovation as well as patient outcomes. This paper has reviewed the literature to identify some of the common issues affecting female surgeons in orthopaedics, and ways in which we can address them: there is a wealth of evidence documenting the differences in the journey of men and women towards a consultant role. We also look at lessons learned from research in the business sector and the military. The ‘Hidden Curriculum’ is out of date and needs to enter the 21st century: microaggressions in the workplace must be challenged; we need to consider more flexible training options and support trainees who wish to become pregnant; mentors, both male and female, are imperative to provide support for trainees. The world has changed, and we need to consider how we can improve diversity to stay relevant and effective. Cite this article:
Multiple studies have established an inverse relationship between ambient theatre temperatures and
Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in
Shoulder arthroplasty is effective at restoring function and relieving pain in patients suffering from glenohumeral arthritis; however, cortex thinning has been significantly associated with larger press-fit stems (fill ratio = 0.57 vs 0.48; P = 0.013)1. Additionally, excessively stiff implant-bone constructs are considered undesirable, as high initial stiffness of rigid fracture fixation implants has been related to premature loosening and an ultimate failure of the implant-bone interface2. Consequently, one objective which has driven the evolution of humeral stem design has been the reduction of stress-shielding induced bone resorption; this in-part has led to the introduction of short stems, which rely on metaphyseal fixation. However, the selection of short stem diametral (i.e., thickness) sizing remains subjective, and its impact on the resulting stem-bone construct stiffness has yet to be quantified. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized and 2mm ‘oversized’ short-stemmed implants. Standard stem sizing was based on a haptic assessment of stem and broach stability per typical surgical practice. Anteroposterior radiographs were taken, and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in
Experience has demonstrated in the hip and knee, related to total joint replacement arthroplasty,
The Masquelet or induced membrane technique (IMT) is a two-stage surgical procedure used for the treatment of segmental bone defects. In this technique, the defect is first filled with a
Aim. The preparation of antibiotic-containing
Introduction. The complex cellular mechanisms of the aseptic loosening of total joint arthroplasties still remain not completely understood in detail. Especially the role of adherent endotoxins in this process remains unclear, as lipopolysaccharides (LPS) are known to be very potent modulators of the cell response on wear particle debris. Contributing factors on the LPS affinity of used orthopedic biomaterials as their surface roughness have to be investigated. The aim of this study was to evaluate the affinity of LPS on the surface roughness of different biomaterials in vitro. The hypothesis of the study was that rough surfaces bind more LPS than smooth surfaces. Materials and methods. Cubes with a side length from ultra-high-molecular-weight-polyethylene (UHMWPE), crosslinked polytethylene (XPE), carbon fibre reinforced poly-ether-ether-ketone (CFR-PEEK), titanium, titanium alloy,
The use of
Limb salvage in musculoskeletal tumor surgery may be complicated by infection. With the advent of modern techniques and medical management limb sparing surgeries can be considered as an alternative to ablation. Between 1992 and 2014, 17 patients were treated for infected megaprostheses after being surgically treated for musculoskeletal tumors. There were nine females and eight males. The mean time from the index procedure until infection was 30 months. Following radical debridement, the resultant skeletal defect averaged 30 cm. Patients were treated with local antibiotics in
When fixing a mid or distal periprosthetic femoral fracture with an existing hip replacement, creation of a stress-riser is a significant concern. Our aim was to identify the degree of overlap required to minimise the risk of future fracture between plate and stem. Each fixation scenario was tested using 4th generation composite femoral Sawbones®. Each sawbone was implanted with a collarless polished cemented stem with
Introduction. Various 2D and 3D surfaces are available for cementless fixation of acetabular cups. The goal of these surface modifications is to improve fixation between the metallic cups and surrounding bone. Radiographs have historically been used to evaluate the implant-to-bone fixation around the acetabular cups. In general, a well fixed cup shows no gaps or radiolucency around the cup's outer diameter. In post-operative radiographs, the presence of progressive radiolucent zones of 2mm or more around the implant in the three radiographic zones is indicative of aseptic loosening, as described by DeLee and Charnley [1]. In this cadaveric study, we investigated the X-ray image characteristics of two different types of acetabular shell surfaces (2D and 3D) to evaluate the implant-to-bone interface in the two designs. Methods. Six human cadavers were bilaterally implanted with acetabular cups by an orthopaedic surgeon. 2D surface cups (Trident, Stryker, Mahwah, NJ) and 3D surface cups (Tritanium, Stryker, Mahwah, NJ) were randomized between the left and right acetabula. The surgeon used his regular surgical technique (1 mm under reaming) to implant the acetabular cups. The cadavers were sent for X-ray imaging after the operation, Figure 1A. Following the X-ray imaging, the acetabular cups were carefully resected from the cadavers. Enough bone around the cups was retained for analysis of the implant-to-bone interface by contact X-ray. The acetabular cups with the surrounding bone were fixed in 70% isopropyl alcohol for about a week and subsequently embedded in