We report the outcome at a minimum of 10 years follow-up for 80
Introduction. The success of total hip replacement in the young has consistently been worse both radiologically and clinically when compared to the standard hip replacement population. Methods. We describe the clinical and radiological outcome of 58 consecutive
In the 1960's Sir John Charnley introduced to clinical practice his low friction arthroplasty with a highly polished cemented femoral stem. The satisfactory long term results of this and other cemented stems support the use of polymethylmethacrylate (PMMA) for fixation. The constituents of PMMA remain virtually unchanged since the 1960s. However, in the last three decades, advances in the understanding of cement fixation, mixing techniques, application, pressurization, stem materials and design provided further improvements to the clinical results. The beneficial changes in cementing technique include femoral preparation to diminish interface bleeding, pulsatile lavage, reduced cement porosity by vacuum mixing, the use of a cement restrictor, pre-heating of the stem and polymer, retrograde canal filling and pressurization with a cement gun, stem centralization and stem geometries that increase the intramedullary pressure and penetration of PMMA into the cancellous structure of bone. Some other changes in cementing technique proved to be detrimental and were abandoned, such as the use of Boneloc cement that polymerised at a low temperature, and roughening and pre-coating of the stem surface. In the last two decades there has been a tendency towards an increased use of cementless femoral fixation for primary hip arthroplasty. The shift in the type of fixation followed the consistent, durable fixation obtained with uncemented acetabular cups, ease of implantation and the poor results of cemented femoral fixation of rough and pre-coated stems. Unlike cementless femoral fixation, modern cemented femoral fixation has numerous advantages: it is versatile, durable and can be used regardless of the diagnosis, proximal femoral geometry, natural neck version, and bone quality. It can be used in combination with antibiotics in patients with a history or predisposition for infection. Intra-operative femoral fractures are rare. However, the risk may be increased in collarless
There has been an evolution in revision hip arthroplasty towards cementless reconstruction. Whilst cemented arthroplasty works well in the primary setting, the difficulty with achieving cement fixation in femoral revisions has led to a move towards removal of cement, where it was present, and the use of ingrowth components. These have included proximally loading or, more commonly, distally fixed stems. We have been through various iterations of these, notably with extensively porous coated cobalt chrome stems and recently with taper-fluted titanium stems. As a result of this, cemented stems have become much less popular in the revision setting. Allied to concerns about fixation and longevity of cemented fixation revision, there were also worries in relation to bone cement implantation syndrome when large cement loads were pressurised into the femoral canal at the time of stem cementation. This was particularly the case with longer stems. Technical measures are available to reduce that risk but the fear is nevertheless there. In spite of this direction of travel and these concerns, there is, however, still a role for cemented stems in revision hip arthroplasty. This role is indeed expanding. First and foremost, the use of cement allows for local antibiotic delivery using a variety of drugs both instilled in the cement at the time of manufacture or added by the surgeon when the cement is mixed. This has advantages when dealing with periprosthetic infection. Thus, cement can be used both as interval spacers but also for definitive fixation when dealing with periprosthetic hip infection. The reconstitution of bone stock is always attractive, particularly in younger patients or those with stove pipe canals. This is achieved well using impaction grafting with cement and is another extremely good use of cement. In the very elderly or those in whom proximal femoral resection is needed at the time of revision surgery, distal fixation with cement provides a good solution for immediate weight bearing and does not have the high a risk of fracture seen with large cementless stems. Cement is also useful in cases of proximal femoral deformity or where cement has been used in a primary arthroplasty previously. We have learnt that if the cement is well-fixed then the bond of cement-to-cement is excellent and therefore retention of the cement mantle and recementation into that previous mantle is a great advantage. This avoids the risks of cement removal and allows for much easier fixation. Stems have been designed specifically to allow this cement-in-cement technique. It can be used most readily with
The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a
Introduction:. The risk for late periprosthetic fractures is higher in patients treated for a neck of femur fracture compared to those treated for osteoarthritis. It has been hypothesised that osteopenia and consequent decreased stiffness of the proximal femur are responsible for this. We investigated if a femoral component with a bigger body would increase the torque to failure in a biaxially loaded composite sawbone model. Method:. A biomechanical composite sawbone model was used. Two different body sizes (Exeter 44-1 vs 44-4) of a
Introduction. The French paradox regarding cemented femoral components has not been resolved, so we compared the mechanical behavior of a French stem, the CMK stem (Biomet, Warsaw, IN, USA), with a collarless,
Background. BOA Guidelines recommend clinical and radiological follow-up after primary total hip arthroplasty (THA) at 1 and 5 years, and every 5 years thereafter to detect asymptomatic failure and allow early intervention. As revision surgery in asymptomatic patients is rare the need for routine follow-up in well-functioning individuals has recently been questioned. To evaluate the role of routine follow-up out-patient appointments (OPA) in identifying failing implants the modes of presentation for patients undergoing revision THA were reviewed. Methods. 176 patients who received 183 revision THAs (2003–2010) were identified from an arthroplasty database. 124 patients who received 131 first time revision THAs after primary cemented total hip arthroplasty met inclusion criteria. Retrospective notes review was performed to investigate symptoms at failure and mode of presentation. Results. Most patients were seen as referrals from other specialities. Only 25% were detected via routine follow-up OPAs. The mode of initial presentation was GP 60%, routine orthopaedic OPA 25%, A&E 9%, hospital inpatient 4%, rheumatology 2%. No patients were asymptomatic. Predominant symptoms were pain 99%, impaired mobility 80%, limp 44%, stiffness 25%, night pain 22%, systemic symptoms 8%. Estimated minimum cost of routine OPA was £35. For the 377 primary THRs performed in 2009 the saving at one year with discharge after 3months would be £13149. Assuming mean 15 year survival £52780 would be saved over the cohort lifespan. Conclusions. Following uncomplicated primary cemented THA with our combination of
We have prospectively followed up 191 consecutive primary total hip replacements utilising a collarless polished tapered (CPT) femoral stem, implanted in 175 patients between November 1992 and November 1995. At a mean follow-up of 15.9 years (range 14 – 17.5) 86 patients (95 hips) were still alive (25 men and 61 women) and available for routine follow up. Clinical outcome was determined from a combination of the Harris (HHS) and Oxford (OHS) hip scores. Radiological assessment was with antero-posterior radiographs of both hips and a lateral radiograph of the operated hip. The radiographs were evaluated using well-recognised assessment techniques. There was no loss to follow up, with clinical data available on all 95 hips. Five patients were too frail to undergo radiographic assessment, therefore radiological assessment was performed on 90 hips (95%). At the latest follow-up, the mean HHS was 78 (range 28 – 100) and the mean OHS was 36 (range 15 – 48). Stems subsided within the cement mantle, with a mean total subsidence of 2.1mm (range 0.4 – 24). Higher grades of heterotopic bone formation were significantly associated with males (p<0.001) and hypertrophic osteoarthritis (p<0.001). Acetabular wear was associated with increased weight (p<0.001) and male sex (p=0.005). Amongst the cohort, only 1 stem (1.1%) has been revised due to aseptic loosening. This patient required reaming of their canal prior to implantation, as a result of a previous femoral osteotomy. The rate of stem revision for any cause was 7.4% (7 stems), of which 4.2% (4 stems) resulted from infection following revision of the acetabular component. Twenty patients (21.1%) required some sort of revision procedure; all except 3 of these resulted from failure of the acetabular component. Cemented cups had a significantly lower revision burden (2.7%) than Harris Galante uncemented components (21.8%) (p<0.001). The CPT stem continues to provide excellent radiological and clinical outcomes at 15 years following implantation. Its results are consistent with other
Introduction. The Exeter cemented
Purpose. To evaluate the radiographic long-term result of femoral revision hip arthroplasty using impacted cancellous allograft combined with cemented, collarless,
Introduction:. In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional
Introduction. There have been many attempts to reduce the risk of femoral component loosening. Using a tapered stem having a highly polished stem surface results in stem stabilization subsequent to debonding and stem-cement taper-lock and is consistent with force-closed fixation design. Purpose. In this study, we assessed the subsidence of two different
A large body of the orthopaedic literature clearly indicates that the cement mantle surrounding the femoral component of a cemented total hip arthroplasty should be at least 2 mm thick. In the early 1970s, another concept was introduced and is still in use in France consisting of implanting a canal filling femoral component line-to-line associated with a thin cement mantle. This principle has been named the “French paradox”. An explanation to this phenomenon has been provided by in-vitro studies demonstrating that a thin cement mantle in conjunction with a canal filling stem was supported mainly by cortical bone and was subjected to low stresses. We carried out a study to evaluate the in-vivo migration patterns of 164 primary consecutive Charnley-Kerboull total hip replacements. All prosthesis in the current series combined an all-polyethylene socket and a 22.2 mm stainless steel femoral head. The monobloc double tapered (5.9 degrees) femoral component was made of 316L stainless steel with a highly polished surface (Ra = 0.04 μm), a quadrangular section, and a neck-stem angle of 130 degrees. The stem was available in six sizes with a stem length (shoulder to tip) ranging from 110 mm to 160 mm, and a neck length ranging from 24 mm to 56 mm. For each size, the femoral component was available in two to four different diameters to adapt the implant to the medullary canal. Hence the whole range comprised a total of 18 standard femoral components. The femoral preparation included removal of diaphyseal cancellous bone to obtain primary rotational and varus/valgus stability of the stem prior to the line-to-line cementation. We used the Ein Bild Roentgen Analyse Femoral Component (EBRA-FCA) method to assess the subsidence of the femoral component. At the minimum 15-year follow-up, 73 patients were still alive and had not been revised at a mean of 17.3 years, 8 patients had been revised, 66 patients were deceased, and 8 patients were lost to follow-up. The mean subsidence of the entire series was 0.63 ± 0.49 mm (0 – 1.94 mm). When using a 1.5 mm threshold, only four stems were considered to have subsided. With revision of either component for any reason as the endpoint, the cumulative survival rate at 17 years was 90.5 ± 3.2% (95% CI, 84.2% to 96.8%). With radiological loosening of the femoral component as the endpoint, the cumulative survival rate at 17 years was 96.8 ± 3.1% (95% CI, 93.2% to 100%). This study demonstrated that, in most cases, a highly
Favourable long-term results have been reported with the standard Exeter cemented stem. We report our experience with a version for use in smaller femora, the Exeter 35.5 mm stem. Although, also a collarless
Femoral impaction grafting with cancellous bone and cement is an important technique in reconstituting deficient bone stock in revision hip arthroplasty. We report the medium to long term results of 75 consecutive patients using a collarless,
Introduction. Segmental defects of the femur present a major problem during revision hip arthroplasty. In particular, calcar segmental defects may compromise initial and long-tem femoral stem stability. Objective. The objective of the present study is to assess mid-term clinical and radiographic follow-up results at least two years after femoral revision comprising reconstruction for calcar segmental defect using metal wire mesh and impacted morcellised allograft. Methods. We performed 26 femoral revisions with calcar reconstruction in 24 patients between 2002 and 2010. The average age was 69.7 years, and the average follow-up period was 5 years and 1 month. All surgeries were performed using a cemented