Advertisement for orthosearch.org.uk
Results 1 - 20 of 126
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 82 - 82
1 Jan 2017
Dozza B Lesci I Della Bella E Martini L Fini M Lucarelli E Donati D
Full Access

Demineralized bone matrix (DBM) is a natural, collagen-based, well-established osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1–2 mm), medium (M, 0.5–1 mm), and small (S, < 0.5 mm). After demineralization, the three DBM samples were characterized by DTA analysis, XRD, ICP-OES, and FTIR. Data clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. The in vivo study showed that only DBM-M was able to induce new bone formation in a subcutaneous ectopic mouse model. When sheep MSC were seeded onto DBM particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. Gene expression analysis performed on recovered implants supports the histological results and underlines the supportive role of MSC in DBM osteoinduction through the regulation of host cells. In conclusion, our results show a relation between DBM particle size, structural modification of the collagen and in vivo osteoinductivity. The medium particles represent a good compromise between no modification (largest particles) and excessive modification (smallest particles) of collagen structure, yielding highest osteoinduction. We believe that these results can guide researchers to use DBM particles of 0.5–1 mm size range in applications aimed at inducing new bone formation, obtaining results more comparable and reliable among different research groups. Furthermore, we suggest to carefully analyze the structure of the collagen when a collagen-based biomaterial is used alone or in association with cells to induce new bone formation


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 89 - 89
1 Mar 2009
McGrath L
Full Access

Particulate debris has been demonstrated to have a major role in the aseptic loosening of artificial joints. Biological activity is stimulated by particles of size 0.1 to 10 microns with maximum affect being seen in particles of approximately 0.5 microns. This study investigated the particle size of wear debris produced at the stem/cement interface in cemented artificial hips comparing different materials and surface finishes of the stem. Materials and Methods: The stem surfaces of three cemented femoral prostheses with different surfaces were used as templates, one smooth (Exeter, How-medica), one slightly rough (Elite, DePuy) and one very rough (Capital, 3M). Three commonly used implant materials were compared, cobalt chrome, stainless steel and titanium alloy. Test plates were manufactured in each material and with each of the three surface finishes. The plates were opposed to cement pins in a sliding wear tester. The debris produced was collected, filtered and examined under an electron microscope. Representative samples of particles produced by each test series were measured and aspect ratios calculated. Plates were also measured pre and post test to ensure no significant change in surface roughness during testing. Results: Each of the materials demonstrated an increase in mean particle size with increasing roughness of the test surfaces. This was more marked for titanium alloy than for cobalt chrome. For any given surface roughness the size of particles produced was smallest for the hardest material (cobalt chrome) and largest for the softest material (titanium alloy). Conclusion: The majority of particles produced were within the biologically active range. Particle size of debris was related to surface roughness with rougher surfaces producing larger particles. Harder materials produced smaller particles than softer materials and more particles in the biologically active range


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 371 - 371
1 Oct 2006
Papageorgiou I Ingham E Fisher J Jones E Learmonth I Case C
Full Access

Introduction: Joint replacement surgery is one of the most common operations that take place in United Kingdom. The major problem in total hip arthroplasty is the generation of particulate wear debris and the subsequent biological responses. Wear debris induces osteolysis and a subsequent failure of the implant that lead to the liberation of greater quantities of particulate and soluble debris to bone marrow, blood, lymph nodes, liver and spleen. Recently, it has been suggested that these adverse effects depend not only on the chemical composition but also on the particulate nature of the material (size and shape). Particle size has been shown to influence the inflammatory response of macrophages to wear debris. This study evaluated whether particle size also influences the viability and mutagenic damage. Methods: Cobalt chrome alloy particles of two sizes (large 2.9±1.1μm, small 0.07±0.04 μm) were generated and characterised by Scanning Electron Microscopy. Different concentrations of particles were added to primary human fibroblasts in tissue culture. The release of cytokines in the medium was assayed by Enzyme-Linked ImunnoSorbent Assay (ELISA). Cell viability was determined by MTT conversion and the degree of DNA damage was quantitatively analysed by the Alkaline Single Cell Gel Electrophoresis (COMET) assay with image analysis. Results: Small particles initialise DNA damage at much lower volumetric concentrations (0.05 and 0.5 μm. 3. /cell) than larger particles (500 μm. 3. /cell). The difference in the doses was approximately related to the difference in surface area of the particles. DNA damage was related to a delayed decrease in cell viability, which was noted after three days of exposure. In contrast, the release of the inflammatory cytokine TNF-α and the multifunctional growth factor TGF-β-2 occurred at lower doses (0.0005 to 5 μm. 3. /cell for TNF-α and 0.5 to 50 μm. 3. /cell for TGF-β-2). No release of IL-6 was detected at any dose. Only growth factor FGF-23 was increased in similar pattern to the DNA damage. Conclusions: This study has demonstrated important differences between the mutagenicity, toxicity and inflammatory potential of small (nanometre sized) and large (micrometer sized) chrome particles


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 86 - 86
1 Jan 2016
Nishi N Chikaura H Kuwahata K Matsubara T Nakashima Y Nakanishi Y
Full Access

Today's aging society is seeing an increase of patients with rheumatoid arthritis and osteoarthritis, as well as an increase in joint replacement surgery. The artificial joints used in this surgery frequently uses ultra-high molecular weight polyethylene (UHMWPE) as a bearing material. However, UHMWPE wear particles are considered to be a major factor in long-term osteolysis, and implant loosening. Many researchers have reported that the volume and size of particles are critical factors in macrophage activation, with particles in the size range of 0.1 – 1.0 μm being the most biologically active. The micro slurry-jet erosion (MSE) apparatus was introduced to minimize the amount of wear, and increase the size of UHMWPE wear particles by texturing the surfaces of Co-Cr-Mo alloy implants. The MSE apparatus uses a slurry of alumina particles (WA#8000: average diameter 1.2 μm) mixed with water. The slurry and compressed air are mixed within an injection nozzle, which is then applied to the Co-Cr-Mo alloy at high speed to achieve a desired nano-textured surface. In this study, four Co-Cr-Mo alloy surface profiles were prepared. The MSE injection nozzle was fed 40.0 mm in alternating directions across each surface with an orthogonal step of 0.5 mm. The surface M-1 was processed with an injection nozzle feed rate of 1.0 mm/s, and obtained a surface roughness of 5.7 nm. M-2 was processed with a feed rate of 2.0 mm/s, and had a surface roughness of 2.3 nm. The M-4 surface used a 40.0 mm alternating directions surface feed, but with a 1.0 mm orthogonal step, and an injection nozzle feed rate of 0.5 mm/s. It obtained a surface roughness of 4.0 nm. The G-1 surface, with a roughness of 10.0 nm, was processed with the typical lapping method, which is used in conventional artificial joints [Fig. 1]. A pin-on-disk wear tester, capable of multidirectional motion, was used to assess which surface was the most appropriate for artificial joints. The UHMWPE pins were flat ended cylinders, 12.0 mm in diameter, and were placed on the disk with a contact pressure of 6.0 MPa. Tests were carried out in 25% (v/v) fetal calf serum with sodium azide to retard bacterial growth. A sliding speed of 12.1 mm/s, and a total sliding distance of 15.0 km were applied. The wear weight of the MSE textured surface M-1 was significantly lower than the wear weight of the conventional surface. Moreover, the percentages of various wear particle sizes obtained from MSE surface texturing was significantly different from those obtained from the traditional surface


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 232 - 232
1 Nov 2002
Ho F
Full Access

Between 1995 and 1998, eighty revision total knee arthroplasties were done for the primary reason of advanced polyethylene wear. The primary arthroplasties prosthesis that failed included thirty-four mobile bearing knees and forty-six fixed bearing knees. In thirty-four Low Contact Stress (LCS) mobile bearing knees, osteolysis was identified intraoperatively in sixteen knees (forty-seven per cent). There were varying of fixation methods included nine cemented, four cementless and three hybrids. In forty-six fixed bearing knees, osteolysis was identified intraoperatively in six knees (thirteen per cent). The fixation methods of prostheses included two cemented and four cementless. The incidence of osteolysis was statistically significant difference between the mobile bearing and fixed bearing knees (p< 0.02). Both scattering electron microscope (SEM) and light scattering analysis were used to examine the UHMWPE wear debris collected from tissue sample. The particle size analyzed by light-scattering is coincident with the measurement by SEM. The major type of wear debris extracted from failed knee prostheses is granular shape. There are more granular wear debris appear in the mobile bearing knees than in the fixed bearing knees. The particle size of UHMWPE wear debris with osteolysis was significantly smaller than that without osteolysis. The high rate of osteolytic lesions in mobile bearing knee (LCS) is well illustrated in our result that a lot of fine UHMWPE wear debris generated in the Low Contact Stress knee. The result also illustrates that there is no relationship between fixation methods and the third body wear that associate with osteolysis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 3 - 3
22 Nov 2024
Samuel BJ Horbert V Jin Z Brauer DS Matziolis G
Full Access

Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate osteoblasts proliferation and prevent microbial adhesion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 44 - 44
2 Jan 2024
Zorba B Boyacioğlu Ö Çağlayan T Reçber T Eroğlu İ Nemutlu E Korkusuz P
Full Access

Osteosarcoma is common in children and adolescents with high mortality due to rapid progression. Therapeutic approaches for osteosarcoma are limited and may cause side effects. Cannabinoid ligands exert antiproliferative, apoptotic effect in cancer cells via CB1/2 or TRPV1 receptors. In this study, we hypothesized that synthetic specific CB2R agonist CB65 might have an antiproliferative and apoptotic effect on osteosarcoma cell lines in vitro. If so, this agent might be a chemotherapeutic candidate for osteosarcoma, with prolonged release, increased stability and bioavailability when loaded into a liposomal system. We first determined CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT- PCR and FCM. CB65 reduced proliferation in osteosarcoma cells by WST-1 and RTCA. IC50 for MG63 and Saos-2 cells were calculated as 1.11×10-11 and 4.95×10-11 M, respectively. The antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. IC50 of CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 hours, respectively by FCM. CB65 was loaded into the liposomal system by thin film hydration method and particle size, polydispersity index, and zeta potentials were 141.7±0.6 nm, 0.451±0.026, and -10.9±0.3 mV, respectively. The CB65-loaded liposomal formulation reduced MG63 and Saos-2 cell proliferation by RTCA. IC50 of CB65 and CB65-loaded liposomal formulation induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 hours, respectively, by FCM. Scratch width was higher in CB65 and CB65-loaded liposome-treated cells compared to control. In this study, the real-time antiproliferative and apoptotic effect of synthetic specific CB2 agonist CB65 in osteosarcoma cell lines was demonstrated for the first time, and the real time therapeutic window was determined. The CB65-loaded liposomal formulation presents a potential treatment option that can be translated to clinic following its validation within animal models and production under GMP conditions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 13 - 13
2 Jan 2024
Clerici M Ciardulli M Forsyth N Maffulli N Della Porta G
Full Access

Tendon injuries are a common problem that can significantly impact an individual's quality of life. While traditional surgical methods have been used to address this issue, Extracellular Vesicles (EVs) have emerged as a promising approach to promote tendon repair and regeneration mechanisms, as they deliver specific biological signals to neighbouring cells. In this study, we extracted human Tendon Progenitor Stem cells (hTPSCs) from surgery explants and isolated their EVs from perfused and static media. hTPSCs were isolated from tendon surgery biopsy (Review Board prot./SCCE n.151, 29/10/2020) and cultured in both static and dynamic conditions, using a perfusion bioreactor (1ml/min). When cells reached 80% confluence, they were switched into a serum-free medium for 24 hours for EVs-production. Conditioned media was ultra-centrifuged for 90min (100000g). The recovered pellet was then characterized by size and concentration (Nanosight NS300), Zeta potential (Mastersizer S), morphology (SEM and TEM) and protein quantification. hTPSCs stemness and multipotency were confirmed through CD73, CD90, and CD105 expression and confirmation of quad-lineage (adipo-osteo-chondro-teno) differentiation. After 7 days, hTPSCs were ready for EVs-production. Ultracentrifugation revealed the presence of particles with a concentration of 7×107 particles/mL consistent across both cultures. Further characterization indicated that EVs collected from perfused conditions displayed an elevated vesicle mean size (mean 143±6.5 nm) in comparison to static conditions (mean 112±7.4 nm). Consistent with, but not in proportion with, the above protein content was measured at 20 ng/ml (dynamic) and 7 ng/mL (static) indicating a nearly 3-fold increase in concentration associated with a ~22% increase in particle size. Proposed data showed that sub-200 diameter vesicles were successfully collected from multipotent hTPSCs starvation, and the vesicle size and protein concentration were compatible with established EV literature; furthermore, dynamic culture conditions seemed more suitable for EVs-production. Further characterization will be required to better understand, EVs-compositions and their role in tendon regenerative events


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 23 - 23
14 Nov 2024
Ambrosio L Schol J Fernández CR Papalia R Vadalà G Denaro V Sakai D
Full Access

Introduction. Intervertebral disc degeneration (IDD) is a progressive process affecting all disc tissues, namely the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs). Several cell-based therapies have been proposed to replenish the disc cell population and promote tissue regeneration. However, cell-free therapeutics have been increasingly explored due to potentially higher advantages and cost-effectiveness compared to cell transplantation. Recently, extracellular vesicles (EVs) isolated from healthy Tie2. +. -NP cells (NPCs) have shown promising regenerative outcomes on degenerative NPCs (dNPCs). The aim of this study was to assess the effect of such EVs on all disc cell types, including AF cells (AFCs) and CEP cells (CEPCs), compared to EVs isolated from bone-marrow derived mesenchymal stromal cells (BM-MSCs). Method. NPCs harvested from young donors underwent an optimized culture protocol to maximize Tie2 expression (NPCs. Tie2+. ). BM-MSCs were retrieved from a commercial cell line or harvested during spine surgery procedures. EV characterization was performed via particle size analysis (qNano), expression of EV markers (Western blot), and transmission electron microscopy. dNPCs, AFCs, and CEPCs were isolated from surgical specimens of patients affected by IDD, culture-expanded, and treated with NPCs. Tie2+. -EVs or BM-MSC-EVs ± 10 ng/mL IL-1b. EV uptake was assessed with PKH26 staining of EVs under confocal microscopy. Cell proliferation and viability were assessed with the CCK-8 assay. Result. Upon characterization, isolated EVs exhibited the typical exosomal characteristics. NPCs. Tie2+. -EVs and BM-MSC-EVs uptake was successfully observed in all dNPCs, AFCs, and CEPCs. Both EV products significantly increased dNPC, AFC, and CEPC viability, especially in samples treated with NPCs. Tie2+. -EVs. Conclusion. NPCs. Tie2+. -EVs demonstrated to significantly stimulate the proliferation and viability of degenerative cells isolated from all disc tissues. Rather than the sole NP, EVs isolated by committed progenitors physiologically residing within the disc may exert their regenerative effects on the whole organ, thus possibly constituting the basis for a new therapy for IDD


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1527 - 1534
3 Nov 2020
Orita K Minoda Y Sugama R Ohta Y Ueyama H Takemura S Nakamura H

Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results. The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 10. 7. counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 10. 7. counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion. This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 22 - 22
1 Apr 2018
Oğuz ÎD Ege D
Full Access

The combination of natural polymers with calcium phosphate cements (CPCs) by mimicking the highly mineralized collagen-based matrix of native bone is crucial in order to obtain mechanically compatible injectable bone substitute (IBS) formulations. This combination overcomes the drawbacks of CPCs like high resorbability, poor mechanical properties, and degradability. In this study, methylcellulose (MC) was combined with CPCs because of MC's thermoresponsive behavior which makes MC suitable for IBS application. In addition, gelatin (GEL) was also incorporated to adjust the gelation temperature and to enhance cell adhesion. These polymers combination makes the liquid (L) phase. The powder (P) phase comprised of tetra calcium phosphate (TTCP), dicalcium phosphate dehydrates (DCPD), and calcium sulfate dehydrates (CSD). TTCP and DCPD are commonly studied for the development of bone cements and they lead to high-density products. CSD was added to the powder phase to increase the porosity as well as to enhance mechanical properties of the IBS. TTCP was synthesized using a solid state method. Test tube inversion method was used to adjust the gelation temperature. GEL concentration was kept constant at 5 wt% and MC concentration varied between 1.5 and 12 wt%. The weight fraction of P/L phase was used as 1.8:1 (wt/wt). Synthesized IBS was characterized by using X-Ray Diffraction (XRD), Fourier Transform Infrared Analysis (FTIR), Zeta Particle Size Analysis, rheometry, and thermogravimetric analysis. XRD and FTIR analysis proved that TTCP was successfully synthesized with a particle size of 430.1 nm. The particle size of P phase mixture was measured as 581.1 nm. Based on the test tube inversion tests, weight fraction of MC was chosen as 10 and 12 while the weight fraction of GEL was fixed as 5. FTIR spectra of the liquid phase was showed that there was a hydrophilic interaction between MC and GEL since both Amide I at 1633 cm. −1. and β-gylcosides bonds among saccharide units at 900–1230 cm. −1. were clearly seen. MC10GEL5/P and MC12GEL5/P were analyzed by the XRD. According to this analysis, only the peaks of TTCP, DCPD, and CSD were observed. From the rheological data obtained from the rheometer, it is evident that all the prepared formulations exhibited Newtonian flow. The measured viscosity of all the investigated formula remained constant with the applied force over time. The MC12GEL5/P had the highest viscosity value due to its high concentration of MC (12% w/v). Results of TG of the synthesized IBS showed two main decomposition steps for the L phase because of the hydrophilic interaction between MC and GEL. The synthesized self-crosslinkable IBS represent promising platforms for future studies in bone tissue engineering. Overall, the presented study identified a novel IBS with suitable viscoelastic properties for non-invasive treatment of bone defects which may ultimately be a substitute for surgery for a wide variety of therapeutic applications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 7 - 7
1 Jun 2016
Sidaginamale R O'Hare J Natu S Joyce T Lord J Nargol A Langton D
Full Access

Background. Some reports have suggested that debris generated from the head neck taper junction is more destructive than equivalent doses from metal bearing surfaces. Methods. Part 1. We examined the relationship between the source (taper/bearing) and volume of metal debris on Cr and Co concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using regression analysis of prospectively collected data at a single revision unit. Part 2. We investigated variables most strongly associated with macroscopic soft tissue injury as documented at revision surgery using ordinal logistic regression. Independent variables included source and volume of CoCr exposure, Cr and Co joint fluid concentrations, joint fluid grade, ALVAL (Aseptic Lymphocytic Vasculitis Associated Lesion) grade, presence of vascular hyalinisation, agglomerated particle size, implant type, patient sex and age. Results. A total of 199 explanted MoM hips were analysed. Multiple regression statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. There was an association between increasing Co concentrations in the joint fluid and an increasing ALVAL score (p<0.001). In contrast, higher Cr concentrations were inversely related to ALVAL (p<0.001). The ALVAL response was itself strongly associated with larger fluid collections (p<0.001). Vascular hyalinisation and larger fluid collections were significantly associated with macroscopic tissue injury (coefficient 2.22, p<0.001 for fluid grade and 4.35, p<0.001 for hyalinisation). Discussion. Metal debris generated from taper junctions appears to be associated with a different biochemical environment than debris generated from bearing surfaces. We believe that this finding may provide some explanation as to the poor performance of MoM THRs compared to the equivalent resurfacing devices and the confusion surrounding the significance of blood metal testing. Conclusion. Chromium does seem to inhibit the development of ALVAL


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 4 | Pages 496 - 503
1 Nov 1976
Stein H Yarom R Robin G Peters P Hall T Makin M

This study shows that after intra-articular injection, aurothiomalate and colloidal gold of small (200 A) particle size were rapidly absorbed from joints while the larger, 300 A, particle size colloidal radioactive gold could not be found outside them. Larger particle size suspensions seem therefore more likely to remain localised in the joint and its lining synovium after intra-articular injection, the systemic absorption from the joint cavity diminishing with increasing particle size. It was also found that the intra-articular injection of small amounts of aurothiomalate, of colloidal gold and of colloidal radioactive gold produces identical degenerative lesions in the lining cells of the proximal convoluted tubules of the kidneys. These lesions were always found, although gold particles were demonstrated only in sampled kidney tissues of the animals injected with the soluble gold preparation whereas no gold could be detected in the tissues of animals injected with colloidal non-radioactive or radioactive gold. Electron microscopic evidence is presented to suggest the possibility that the mitochondria are the "target" organelles of the gold-induced cellular damage. Mitochondrial damage was demonstrated in liver and spleen in addition to the already described kidney damage. The correlation between structure and function of the mitochondrial changes is not clear, and ionic shifts may be both a cause and a result of damage


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 9 - 9
1 Feb 2012
McGrath L
Full Access

The effects of wear particles on artificial hip joints are well documented. Aseptic loosening has been demonstrated to be dependent on both particle numbers and particle size. This study investigated the effects of stem material and surface finish on particles produced at the stem/cement interface in cemented artificial hips. Three commonly used implant materials of different hardness were investigated: cobalt chrome, the hardest of the three materials, stainless steel and titanium alloy which was the softest material tested. The surfaces of three femoral stems with different surface finishes were measured and used as templates; the Exeter which is highly polished, the Charnley which is moderately rough and the Capital which is very rough. Test plates were manufactured in each material and with each surface finish making 9 sets of plates in all. The plates were opposed to cement pins (CMW) in a sliding wear tester. The volume of debris produced was calculated from measurements of the pins pre- and post-test. The debris was collected, filtered and examined under the electron microscope, which allowed particle sizes of a representative sample of debris to be measured. From this mean particle size was calculated. Volume of debris: for all three materials the roughest surface produced the greatest volume of debris and the smoothest surface the least. For any given surface finish the softest material produced the greatest volume of debris and the hardest material the least. Size of particles: for all three materials the roughest surfaces produced the largest particles and the smoothest surface the smallest particles. For any given surface finish the hardest material produced the smallest particles and the softest material produced the largest particles


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 925 - 933
1 Jul 2016
Sidaginamale RP Joyce TJ Bowsher JG Lord JK Avery PJ Natu S Nargol AVF Langton DJ

Aims. We wished to investigate the influence of metal debris exposure on the subsequent immune response and resulting soft-tissue injury following metal-on-metal (MoM) hip arthroplasty. Some reports have suggested that debris generated from the head-neck taper junction is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal debris on chromium (Cr) and cobalt (Co) concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using multiple regression analysis of prospectively collected data. A total of 199 explanted MoM hips (177 patients; 132 hips female) were analysed to determine rates of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. Metal debris generated from taper junctions appears to be of a different morphology, composition and therefore, potentially, immunogenicity to that generated from bearing surfaces. Conclusion. The differences in debris arising from the taper and the articulating surfaces may provide some understanding of the increased incidence of soft-tissue reactions reported in patients implanted with MoM total hip arthroplasties compared with patients with hip resurfacings. Cite this article: Bone Joint J 2016;98-B:925–33


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 149 - 149
1 Sep 2012
Putzer D Mayr E Haid C Reinthaler A Nogler M
Full Access

In Total Hip Arthroplasty (THA) bone loss is recovered by using compacted porous bone chips. The technique requires the morsellised allograft to be adequately compacted to provide initial stability for the prosthesis in order to prevent early massive subsidence and to induce bone remodeling. Therefore the bone grafts provide initial stability and an environment in which revascularization and incorporation of the graft into the host skeleton may occur. Acetabular reconstruction with impacted morsellised cancellous grafts and cement leads to satisfactory long-term results. In the acetabular impact-grafting procedure, a hammer and an impaction stick is used for manual compaction. Another technique uses a hammer driven by compressed air, which could lead to higher density and improved stability of bone chips in the acetabulum. The aim of this study was to compare two different compaction modes for bone impaction grafting for the acetabulum. The hypothesis was that a pneumatic impaction method would produce less variable results than the manual impaction mode and lead to better compaction results of the bone chips in less time. Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. For each compaction method and for each time interval (0, 3, 6, 9, 12, 15 and 30 [s] of compaction time) 30 measurements of force and distance variations were taken. From the measurements of force and distance variations bulk density, contact stiffness, impaction hardness and penetration resistance were calculated before and after the established time intervals of compaction. Since not all data was normally distributed the non-parametric U-Test was used for comparison of the two impaction methods. Particle size distribution was determined using sieve analysis according to Din 18123 standard after the compaction experiments. Results have shown that the pneumatic method leads to higher values in impaction hardness, contact stiffness and bulk density and is more suitable to increase the primary stability of the implant. The differences in bulk density, impaction hardness and contact stiffness where statistically significant (p<0.01). No significant differences were found between the two different methods concerning the penetration resistance. The coefficient of uniformity C. u. , calculated from the particle size distribution determined by the sieve analysis, has a value of 3.8. The particle size distribution is comparable to the results published in literature. Pneumatic impaction achieves higher density values in less time with less force applied and results in more reproducible outcomes when used. It reduces therefore the risk of bone fracture, as smaller peak forces are used for less time. However for optimal osteointegration it is not recommended to achieve maximum density. Further clinical studies should determine a reference value for optimal growth-in of osteocytes. Manual impaction shows more variable results and depends much on the experience of the surgeon. The pneumatic hammer is therefore a suitable tool to standardize the impaction process for acetabular bone defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 430 - 430
1 Sep 2012
Brady M Sinz I Kinbrum A Briscoe A
Full Access

Introduction. Patients suffering from finger joint pain or dysfunction due to arthritis and traumatic injury may require arthroplasty and joint replacement. Single-part silicone-based implants remain the material of choice and most widely used option, although reports on their long-term clinical performance are variable. For trauma indications, patients have a high expectation of functionality necessitating the use of materials with high wear resistance and mechanical performance. A new proximal inter phalangeal (PIP) joint designed by Zrinski AG (Wurmlingen, Germany), comprising a self-mating carbon fibre reinforced polyetheretherketone (CFR-PEEK) coupling, may provide a suitable alternative. Here we describe the wear performance of the CFR-PEEK components in a PIP joint wear simulator and subsequent characterisation of the wear particles. Methods. Four proximal and distal PIP components were milled (Zrinski AG) from CFR-PEEK (Invibio Ltd, UK) and subjected to wear testing (Endo Lab ® GmbH, Germany). The test was conducted at 37°C over 5 million cycles in 25% bovine serum (refreshed every 0.5 million cycles). The load was a static force of 63N applied at a frequency of 1Hz with a flexion/extension angle of ±40°. Wear rate was determined by mass loss from each component. Pooled serum samples from the wear simulator were subjected to protein digest and the remaining particulate debris isolated by serial filtration through 10μm, 1μm and 0.1μm filters. Particle size and morphology was subsequently determined by scanning electron microscopy (SEM) (Continuum Blue, UK). Results. Both components exhibited high resistance to wear, with the proximal component resulting in a wear rate of 0.09mg/million cycles, whilst that of the distal component was 0.07mg/million cycles. Particle analysis revealed that the majority of debris generated during the wearing in phase (0.5 million cycles) was <0.5μm in diameter. During the steady state phase (0.5–3 million cycles) a large peak in particle size was observed in the 2μm diameter range, whilst in the latter stage (3–5 million cycles) peaks in particle size were seen at 0.4μm and 2μm. During each stage, both the particle count and aspect ratio remained relatively unchanged. Conclusion. Under these test conditions the CFR-PEEK coupling demonstrated a linear and consistently low wear rate over the 5 million cycle test period, with the majority of particles generated being <2μm in diameter. The low wear rate and biocompatibility demonstrated by CFR-PEEK suggests it is a suitable alternative to silicone in PIP joint prostheses. Acknowledgements. The authors would like to thank Zrinski AG, Christian Kaddick at EndoLab GmbH for the wear simulator work and Mark Yeoman at Continuum Blue Ltd. for particle analysis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 46 - 46
1 Dec 2020
Jodati H Evis Z Tezcaner A
Full Access

Hydroxyapatite (HAp) is a well-known synthetic biomaterial that has been extensively employed in orthopedic fields as bone grafts or coating of metallic implants. During recent years, ion doping or ionic substitution has been used to improve the performance of bioceramics. Owing to the benefits of a bioactive element such as boron (B) in bone health, and reported impaired bone growth or abnormal development of bone in case of boron deficiency, it was expected that doping of boron could make a positive effect on physicochemical and biological properties of HAp. In this study, boron-doped hydroxyapatite (BHAp) was synthesized successfully through utilizing microwaved assisted wet precipitation route. X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry were used to characterize the phase purity, lattice parameters, degree of crystallinity, particle size and elemental composition of synthesized BHAp powders. Substitution of borate (BO. 3. 3-. ) ion with the phosphate (PO. 4. 3-. ) in HAp crystal caused lattice distortion due to radius difference between the dopant and the replaced element, which also led to smaller crystalline size and lower crystallinity degree in doped samples (∼ 91 % in 0.5 mol doped BHAp compared to 95 % of pure HAp). In vitro results revealed that although there was no significant difference in biodegradability of doped BHAp, after submerging samples in simulated body fluid for 14 days, intense growth of apatite particles (Ca/P ratio of 1.74) was observed on the surface of BHAp pellets, especially in samples with 0.25 and 0.5 mole B. Observed higher bioactivity was expected due to lower crystallinity degree of BHAp samples. Due to the results of this study, incorporation of B into the structure of HAp could be considered as a positive step to improve the bioactivity and biological performance of these biomaterials in orthopedic applications


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 79 - 79
1 Mar 2017
Patel J Lal S Hall R Wilshaw S Tipper J
Full Access

Introduction. Wear debris generated by total hip replacements (THRs) may cause mechanical instability, inflammation, osteolysis and ultimately implant loosening, thus limiting the lifetime of such devices [1]. This has led to the development of biocompatible coatings for prostheses. Silicon nitride (SiN) coatings are highly wear resistant and any resultant wear debris are soluble, reducing the possibility of a chronic inflammatory reaction [2]. SiN wear debris produced from coatings have not been characterized in vivo. The aim of this research is to develop a sensitive method for isolating low volumes of SiN wear debris from periprosthetic tissue. Methods. Commercial silicon nitride particles of <50nm (Sigma Aldrich) were incubated with formalin fixed sheep synovium at a volume of 0.01mm. 3. /g of tissue (n=3). The tissue was digested with papain (1.56mg/ml) for 6h and subsequently proteinase K (1mg/ml) overnight. Proteinase K digestion was repeated for 6h and again overnight, after which samples appeared visibly homogeneous [Figure 1]. Samples were then subjected to density gradient ultracentrifugation using sodium polytungstate (SPT) [3]. The resulting protein band was removed from the pellet of particles. Control tissue samples, to which no particles were added, were also subjected to the procedure. Particles were washed with filtered water to remove residual SPT using ultracentrifugation and filtered onto 15nm polycarbonate filters. The filtered particles were imaged by cold field emission scanning electron microscopy (CFE-SEM) and positively identified by elemental analysis before and after the isolation procedure. To validate whether the isolation method affected particle size or morphology, imaging software (imageJ) was used to determine size distributions and morphological parameters of the particles. A Kolmogorov-Smirnov test was used to statistically analyse the particle morphology. Results. The appearance of particles was similar before and after the isolation procedure [Figure 2]. Scanning electron micrographs also demonstrated the complete removal of proteins and light impurities. Elemental analysis confirmed the identity of retrieved particles as SiN. The particle size distributions of isolated and non-isolated particles were similar [Figure 3]. Statistical analysis demonstrated that morphology in terms of roundness and aspect ratio was unchanged by the isolation procedure (P<0.05). Discussion. Results indicate that the particle isolation method effectively isolates low volumes of SiN particles whilst retaining particle characteristics and enabling particle characterisation. The method will therefore be validated for application to additional particle materials and applied to in vivo studies of novel SiN coated prostheses in a rabbit and sheep model


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 29 - 29
1 Mar 2021
Calejo I Costa-Almeida R Reis RL Gomes ME
Full Access

Tendon-to-bone multi-tissue transition exhibits a hierarchical and continuous gradient of matrix composition and alignment, allowing for efficient transmission of mechanical loading between tendon and bone. Upon injury, main problems associated with tendon-to-bone regeneration include disorganized matrix deposition, with a gradual loss of mineral content resulting in poor mechanical properties, limiting tissue integration and the formation of a graded interface. Therefore, we propose to assembly two types of continuous microfibres with distinct topological and compositional features tailored to guide cell alignment and matrix deposition while matching the mechanical requirements of the native tissue. Wet-spinning was used to produce textured composite microfibres using different flow rates and two polymer blends to replicate the anisotropic architecture of tendon (PCL/Gelatin, 22/9%, w/v) and the isotropic organization together with mineral composition of bone (PCL/Gelatin/Hydroxyapatite, 22/9% w/v and 7.7% w/w HAp). Obtained microfibres morphology, chemical and mechanical properties were evaluated. Biological performance was studied using human adipose-derived stem cells (hASCs). Cytoskeleton alignment, nuclei elongation and matrix mineralization were evaluated. Textile techniques were used to create a 3D fibrous scaffold. Morphological features were analyzed by micro-CT. PCL/Gelatin fibers produced at 1 mL/h extrusion rate exhibited the highest anisotropic alignment, in opposition to PCL/Gelatin/HAp fibers produced under the same condition. Micro-CT analysis of PCL/Gelatin/HAp fibers demonstrated variations within pore diameter and particles size between the different flow rates. Herein, PCL/Gelatin fibers induced a higher cytoskeleton alignment and nuclei elongation (p < 0.0001) in seeded hASCs. In contrast, significantly higher mineralization was found in PCL/Gelatin/HAp fibres (day 7, p < 0.04; day 14, p < 0.0001) as observed by alizarin red staining and quantification, suggesting the induction of an osteogenic-like phenotype. As proof of concept, textile techniques were used to assemble the two types of fibers and create a 3D scaffold presenting a continuous gradient in HAp content, as well as topological cues. After 14 days of culture with hASCs, a gradient of collagen deposition and matrix mineralization was found (p < 0.014, p < 0.0001). Higher deposition of collagen type II was observed in the tendon and interface parts of the fibrous scaffold and collagen type X in the interface. Overall, the wet-spinning method was efficiently used to engineer continuous textured composite microfibers. PCL/Gelatin fibers supported cell alignment mimicking tendon one, while PCL/Gelatin/HAp fibers induced mineral deposition and a possible phenotypic change without additional medium supplementation. Textile techniques allowed fibres assemblage and 3D scaffolds fabrication envisioning tendon-to-bone applications