Abstract
Introduction
Patients suffering from finger joint pain or dysfunction due to arthritis and traumatic injury may require arthroplasty and joint replacement. Single-part silicone-based implants remain the material of choice and most widely used option, although reports on their long-term clinical performance are variable. For trauma indications, patients have a high expectation of functionality necessitating the use of materials with high wear resistance and mechanical performance. A new proximal inter phalangeal (PIP) joint designed by Zrinski AG (Wurmlingen, Germany), comprising a self-mating carbon fibre reinforced polyetheretherketone (CFR-PEEK) coupling, may provide a suitable alternative. Here we describe the wear performance of the CFR-PEEK components in a PIP joint wear simulator and subsequent characterisation of the wear particles.
Methods
Four proximal and distal PIP components were milled (Zrinski AG) from CFR-PEEK (Invibio Ltd, UK) and subjected to wear testing (Endo Lab ® GmbH, Germany). The test was conducted at 37°C over 5 million cycles in 25% bovine serum (refreshed every 0.5 million cycles). The load was a static force of 63N applied at a frequency of 1Hz with a flexion/extension angle of ±40°. Wear rate was determined by mass loss from each component. Pooled serum samples from the wear simulator were subjected to protein digest and the remaining particulate debris isolated by serial filtration through 10μm, 1μm and 0.1μm filters. Particle size and morphology was subsequently determined by scanning electron microscopy (SEM) (Continuum Blue, UK).
Results
Both components exhibited high resistance to wear, with the proximal component resulting in a wear rate of 0.09mg/million cycles, whilst that of the distal component was 0.07mg/million cycles. Particle analysis revealed that the majority of debris generated during the wearing in phase (0.5 million cycles) was <0.5μm in diameter. During the steady state phase (0.5–3 million cycles) a large peak in particle size was observed in the 2μm diameter range, whilst in the latter stage (3–5 million cycles) peaks in particle size were seen at 0.4μm and 2μm. During each stage, both the particle count and aspect ratio remained relatively unchanged.
Conclusion
Under these test conditions the CFR-PEEK coupling demonstrated a linear and consistently low wear rate over the 5 million cycle test period, with the majority of particles generated being <2μm in diameter. The low wear rate and biocompatibility demonstrated by CFR-PEEK suggests it is a suitable alternative to silicone in PIP joint prostheses.
Acknowledgements
The authors would like to thank Zrinski AG, Christian Kaddick at EndoLab GmbH for the wear simulator work and Mark Yeoman at Continuum Blue Ltd. for particle analysis.