Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Impaction Bone Grafting: Comparision of Two Impaction Modes

The International Society for Technology in Arthroplasty (ISTA)



Abstract

In Total Hip Arthroplasty (THA) bone loss is recovered by using compacted porous bone chips. The technique requires the morsellised allograft to be adequately compacted to provide initial stability for the prosthesis in order to prevent early massive subsidence and to induce bone remodeling. Therefore the bone grafts provide initial stability and an environment in which revascularization and incorporation of the graft into the host skeleton may occur. Acetabular reconstruction with impacted morsellised cancellous grafts and cement leads to satisfactory long-term results. In the acetabular impact-grafting procedure, a hammer and an impaction stick is used for manual compaction. Another technique uses a hammer driven by compressed air, which could lead to higher density and improved stability of bone chips in the acetabulum. The aim of this study was to compare two different compaction modes for bone impaction grafting for the acetabulum. The hypothesis was that a pneumatic impaction method would produce less variable results than the manual impaction mode and lead to better compaction results of the bone chips in less time.

Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. For each compaction method and for each time interval (0, 3, 6, 9, 12, 15 and 30 [s] of compaction time) 30 measurements of force and distance variations were taken. From the measurements of force and distance variations bulk density, contact stiffness, impaction hardness and penetration resistance were calculated before and after the established time intervals of compaction. Since not all data was normally distributed the non-parametric U-Test was used for comparison of the two impaction methods. Particle size distribution was determined using sieve analysis according to Din 18123 standard after the compaction experiments.

Results have shown that the pneumatic method leads to higher values in impaction hardness, contact stiffness and bulk density and is more suitable to increase the primary stability of the implant. The differences in bulk density, impaction hardness and contact stiffness where statistically significant (p<0.01). No significant differences were found between the two different methods concerning the penetration resistance. The coefficient of uniformity Cu, calculated from the particle size distribution determined by the sieve analysis, has a value of 3.8.

The particle size distribution is comparable to the results published in literature. Pneumatic impaction achieves higher density values in less time with less force applied and results in more reproducible outcomes when used. It reduces therefore the risk of bone fracture, as smaller peak forces are used for less time. However for optimal osteointegration it is not recommended to achieve maximum density. Further clinical studies should determine a reference value for optimal growth-in of osteocytes. Manual impaction shows more variable results and depends much on the experience of the surgeon. The pneumatic hammer is therefore a suitable tool to standardize the impaction process for acetabular bone defects.


∗Email: david.putzer@i-med.ac.at