Osteoporosis accounts for a leading cause of degenerative skeletal disease in the elderly.
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate
The T-lymphocyte secreted pro-inflammatory cytokine, interleukin-17F (IL-17F), was found to be a key mediator in the cellular response of the immune system in the early phase of fracture repair but its intracellular signaling processes are currently not known in
Titanium (Ti) is well known in orthopedic implant materials such as total hip replacement arthroplasty. Osseointegration of orthopedic implants is defined as the formation of a direct interface between the implant and the bone without intervening soft tissue. Unmodified Ti is not sufficient to complete adhesion between Ti surface and host bone with subsequent implant loosening over time and ultimately implant failure. An effective approach to enhance the biological activity of orthopedic implants and improve post-implantation healing is to modify the implant surface. The aim of this study was to investigate the effect of functionalized titanium (Ti) with alendronate (Aln) and bone morphogenic protein-2 (BMP-2) for enhancement of
Orthopaedic surgeons are astounded with the strength of bone found in Polynesians. Furthermore the rate at which new Polynesian bone over-grows metal fixation of a recent fracture is impressive. Studies demonstrate that Polynesians have a higher Bone Mineral Density (BMD) than age and weight matched Europeans in NZ (1, 2). In addition, Polynesians have a lower incidence of hip fractures when compared to other ethnic groups (3). This suggests that the higher BMD or other inherent differences must account for the lower incidence of hip fractures in Polynesians. The aim of this study was to identify (if any) a difference in
Bacterial contamination of endoprostheses especially in revision surgery is an upcoming problem according to increasing number of joint replacements. Early adherence of bacteria producing a biofilm is difficult to treat. Silver coating of implants offers the opportunity to avoid bacterial adhesions acting against all relevant bacteria causing infections on the implant. We developed a new technique of nano-silver coating using elemental silver covered with SiOxCy whose thickness can be varied determing duration of the coating on the implant. The SiOxCy and silver is completely soluble at least at 3 months. The silver coatings used so far are measuring at least 10um and they are not soluble making a cementless implantation of the endoprostheses impossible. The aim of this study was to test the compatibility of the new combined coating with human
Aim. Bone regeneration following the treatment of Staphylococcal bone infection or osteomyelitis is challenging due to the ability of Staphylococcus aureus to invade and persist within bone cells, which could possibly lead to antimicrobial tolerance and incessant bone destruction. Here, we investigated the influence of Staphylococcal bone infection on
Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology, collagen, and calcium production by primary bovine
Aim. Here, we are aimed to evaluate bacteriophage (191219) to treat S. aureus implant-associated bone infections by means of testing against S. aureus during its planktonic, biofilm and intracellular growth phases and finally assessing antimicrobial effect on in vivo biofilm formed on metal K-wire in an alternative insect model Galleria mellonella. Method. The bacteriophages (191219) were provided from D&D Pharma GmbH. These bacteriophages were tested against S. aureus EDCC 5055 (MSSA) and S. aureus DSM 21979 (MRSA) strains. To assess the activity of bacteriophages against planktonic growth phase, bacteriophages, and S. aureus EDCC 5055(1×10. 7. CFU/ml) were co-cultured in LB media as multiplicity of infection (MOI) of 10, 1, 0.1, and 0.01 for 24 hours at 37. o. C and finally plated out on the LB agar plates to estimate the bacterial growth. The antimicrobial activity of bacteriophages on biofilms in vitro was measured by analysing the incubating the several fold dilutions of bacteriophages in LB media with biofilms formed on 96-well plate. The eradication of biofilm was analysed with crystal violet as well as CFU analysis methods. Later, the effect of bacteriophages on intracellular growth of S. aureus in side
One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM. Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization. By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of proteoglycans as decorin. Immunohistochemistry of biopsies revealed that PC-cells inside bone organize into two manners: i) glandular-like structures where cells maintain their polarization in the expression of prostate markers, ii) diffuse infiltrate that spreads along bone surfaces, with loss of cell polarity. These cells take direct contact with
Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of
Aim. Staphylococcus aureus is the first causative agent of bone and joints infections (BJI). It causes difficult-to-treat infections because of its ability to form biofilms, and to be internalized and persist inside
Fracture non-union can be as high as 20% in certain clinical scenarios and has a high associated socioeconomic burden. Boron has been shown to regulate the Wnt/β-catenin pathway in other bodily processes. However, this pathway is also critical for bone healing. Here we aim to demonstrate that the local delivery of boric acid can accelerate bone healing, as well as to elucidate how boric acid, via the regulationtheWnt/β-catenin pathway, impacts theosteogenic response of bone-derived osteoclasts and
Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone metabolism and can be regulated by microRNA (miRNA). Adult patients with osteolysis or aseptic loosening undergoing revision HKA were recruited. Age and gender matched patients undergoing primary hip or knee arthroplasty were our controls. Samples of bone, tissue and blood were collected and RNA isolation was performed. The best quality samples were used for RNA-sequencing. Data analysis was performed using RStudio and Galaxy to identify differentially expressed genes. Western blotting of IL6 was used to confirm protein expression. Five circulating miRNA were identified which had 10 differentially expressed genes in bone and 11 differentially expressed genes in tissue related to the JAK-STAT pathway. IL6 in bone and EpoR in bone were highly significant and IL6 in tissue, MPL in bone, SOCS3 in tissue, JAK3 in bone and SPRED1 in bone were borderline significant. Western blot results demonstrated up-expression of IL6 in bone tissue of revision patients. Periprosthetic osteolysis and aseptic loosening can be attributed to miRNA regulation of the JAK-STAT pathway in
Bone regeneration includes a well-orchestrated series of biological events of bone induction and conduction. Among them, the Wnt/β-catenin signaling pathway is critical for bone regeneration. Being involved in several developmental processes, Wnt/β-catenin signaling must be safely targeted. There are currently only few specific therapeutic agents which are FDA-approved and already entered clinical trials. A published work has shown that Tideglusib, a selective and irreversible small molecule non-ATP-competitive glycogen synthase kinase 3-β(GSK-3β) inhibitor currently in trial for Alzheimer's patients, can promote tooth growth and repair cavities. [1]Despite some differences, they are some similarities between bone and tooth formation and we hypothesise that this new drug could represent a new avenue to stimulate bone healing. In this work, we locally delivered Tideglusib (GSK3β inhibitor) in the repair of femoral cortical window defects and investigated bone regeneration. A biodegradable FDA-approved collagen sponge was soaked in GSK-3βinhibitor solution or vehicle only (DMSO) and was implanted in 1 × 2 mm unicortical defects created in femora of 35 adult wild-type male mice. Bone defect repair on control and experimental (GSK-3βinhibitor) groups was assessed after 1 week (n=22), 2 weeks (n=24) and 4 weeks (n=24) with microCT and histological analysis foralkaline phosphatase (ALP,
Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate
Aim. The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by
The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by
In order to improve fast osseointegration, to modulate inflammatory response and to avoid biofilm formation, several attempts of surface modifications of titanium alloy in term of surface topography and chemistry have been performed over years, but this is still an open issue. In our research work, a patented chemical treatment was developed and tailored to improve fast osseointegration and to allow further surface functionalization in order to get a multifunctional surface. After the chemical treatment, Ti6Al4V shows a micro and nano-textured surface oxide layer with high density of hydroxyls groups, as summarized Figure 1: it is able to induce apatite precipitation (during soaking in Simulated Body Fluid), high wettability by blood, specific protein adsorption, positive
Osteogenesis Imperfecta (OI) is a heritable bone disorder characterized by bone fragility and often caused by mutations in the Type I collagen-encoding genes COL1A1 and COL1A2. The pathophysiology of OI, particularly at the cellular level, is still not well understood. This contributes to the lack of a cure for this disorder as well as an effective preventive or management options of its complications. In the bone environment, mesenchymal stem cells (MSCs) and