Abstract
Titanium (Ti) is well known in orthopedic implant materials such as total hip replacement arthroplasty. Osseointegration of orthopedic implants is defined as the formation of a direct interface between the implant and the bone without intervening soft tissue. Unmodified Ti is not sufficient to complete adhesion between Ti surface and host bone with subsequent implant loosening over time and ultimately implant failure. An effective approach to enhance the biological activity of orthopedic implants and improve post-implantation healing is to modify the implant surface. The aim of this study was to investigate the effect of functionalized titanium (Ti) with alendronate (Aln) and bone morphogenic protein-2 (BMP-2) for enhancement of osteoblast activity in vitro.
Aln and/or BMP-2 were sequentially immobilized to the heparinized-Ti (Hep-Ti) surface. The compositions of pristine Ti and Hep-Ti with or without Aln and/or BMP-2 were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Osteoblast activities on all Ti substrates were investigated by cell proliferation assays, alkaline phosphate (ALP) activity, calcium deposition, gene expressions of osteocalcin and osteopontin.
The modified Ti surface with heparin, Aln, BMP-2 and Aln/BMP-2 showed similar morphologies compared to that of pristine Ti on scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Aln or BMP-2 from Aln/Hep-Ti, BMP-2/Hep-Ti or Aln/BMP-2/ Hep-Ti substrates exhibited sustained release profiles up to 4 weeks. No significant cytotoxic effects were observed for incubation periods for up to 48 h. the ALP activity of MG-63 cells cultured on Hep-Ti was not significantly different compared to those cultured on pristine Ti for 7, 14, and 21 days. Alkaline phosphatase(ALP) activities of osteoblasts cultured on Ti groups immobilized with Aln, BMP-2, or Aln/BMP-2 were significantly increased when compared to pristine Ti(p < 0.05). Calcium deposition was markedly increased in Aln/BMP-2/Hep-Ti compared to Aln/Hep-Ti or BMP-2/Hep-Ti, respectively (p < 0.05). mRNA expressions of osteocalcin(OCN) and osteopontin(OPN) of osteoblasts grown on Aln/Hep-Ti, BMP-2/Hep-Ti, and Aln/BMP-2/Hep-Ti were significantly higher than of those grown on pristine Ti (p < 0.05).
Based on the results of the in vitro studies, we showed that co-delivery of alendronate and BMP-2 had an additive effect on osteoblast activity and mineralization when compared with pristine Ti as well as alendronate or BMP-2 alone. Functionalized Ti systems with alendronate and BMP-2 can give a good solution to solve the most common problems associated with orthopedic and dental implants. Furthermore, in vivo studies required to determine the optimal doses of alendronate and BMP-2 for clinical application.