One of the most common bacteria in
The most common bacteria in
Orthopedic device-related bone infection is one of the most distressing complications of the surgical fixation of fractures. Despite best practice in medical and surgical interventions, the rate of infection remains stubbornly persistent, and current estimates indicate that treatment failure rates are also significant. As we approach the limit of the effectiveness of current anti-infective preventative and therapeutic strategies, novel approaches to infection management assume great importance. This presentation will describe our efforts to develop and test various hydrogels to serve as customized antibiotic delivery vehicles for infection prevention and treatment. Hydrogels offer solutions for many of the challenges faced by complex trauma wounds as they are not restricted spatially within a poorly defined surgical field, they often degrade rapidly with no compatibility issues, and releases 100% of the loaded antibiotic. The preliminary data set proving efficacy in preventing and treating infection in both rabbit and sheep studies will be described, including local antibiotic concentrations in the intramedullary canal over time, compared to that of the more conventional antibiotic loaded bone cement. These two technologies show potential for the prevention and treatment of infection in trauma patients, with a clear focus on optimized antibiotic delivery tailored for complex wounds.
Objectives. Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?. Methods. Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. Results. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Conclusion. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro. These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to
Abstract. Objectives. The objective of this study is to investigate if genomic sequencing is a useful method to diagnose
Infection is one of the most serious complications of orthopedic surgery, particularly in implant-related procedures. Minimum inhibitory concentration (MIC) for identified bacteria is an important factor for successful antibiotic treatment. We investigated the MIC of antibiotics in Staphylococcus species from
Thermostability is a key property in determining the suitability of local delivery of antibiotics in the treatment of
Objectives. Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of
Abstract. OBJECTIVES. Staphylococcus aureus is one of the most common pathogens in
Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Materials and Methods. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from
Introduction. In 2011 the Scottish Government published national MRSA screening requirements. A comparison of Orthopaedic and ENT elective surgery intended to juxtapose a specialty known to take MRSA screening seriously with one that has little clinical concern with regards MRSA infection. ENT surgery parallels Orthopaedics in using implants and there potentially being MRSA colonisation at or close to the site of surgery. In
Summary Statement. Conventional culture techniques have poor sensitivity for detecting bacteria growing in biofilms, which can result in under-diagnosis of infections. Sonication of biofilm colonised orthopaedic biomaterials can render bacteria in biofilm more culturable, thereby improving diagnosis of
The objective of this study was to compare the elution characteristics,
antimicrobial activity and mechanical properties of antibiotic-loaded
bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic
with inert filler (xylitol), or liquid antibiotic, particularly focusing
on vancomycin and amphotericin B. Cement specimens loaded with 2 g of vancomycin or amphotericin
B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol
(xylitol group) or 12 ml of antibiotic solution containing 2 g of
antibiotic (liquid group) were tested.Objectives
Methods