header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE EFFECTS OF NANOPATTERN SURFACE TECHNOLOGY ON ORTHOPAEDIC JOINT REPLACEMENT INFECTION

The British Orthopaedic Research Society (BORS) Annual Conference, September 2016



Abstract

One of the most common bacteria in orthopaedic prosthetic infections is Staphylococcus Aureus. Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface.

Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion on nanofabricated materials. We hypothesise that surface nanotopography impacts the differential ability of staphylococci species to adhere via altered metabolomics and may reduce orthopaedic implant infection rate.

Bacteria were grown and growth conditions optimised. Polystyrene and titanium (Ti) nanosurfaces were studied. The polystyrene surfaces had different nanopit arrays, while the Ti surfaces expressed different nanowire structures. Adhesion analysis was performed using fluorescence imaging, quantitative PCR and bacterial percentage coverage calculations. Further substitution with ‘heavy’ labelled glucose into growth medium allowed for bacterial metabolomic analysis and identification of any up-regulated metabolites and pathways.

Our data demonstrates reduced bacterial adhesion on specific nanopit polystyrene arrays, while nanowired titanium showed increased bacterial adhesion following qPCR (P<0.05) and percentage coverage calculations (P<0.001). Further metabolomic analysis identified significantly increased intensity counts of specific metabolites (Pyruvate, Aspartate, Alanine and Carbamoyl aspartate).

Our study shows that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. The identification of metabolic pathways involved in adhesion may allow for a targeted approach to biofilm eradication in S. aureus. This is of significant benefit to both the patient and the surgeon, and may well extend far beyond the realms of orthopaedics.


Email: