Aims. This study was performed to explore the effect of melatonin on pyroptosis in
Aims. In this investigation, we administered oxidative stress to
Aims. Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced
Introduction. Primary cilia are singular structures containing a microtubule-based axoneme which are believed to not only be mechanosensitive but also to co-ordinate many cell functions via signalling pathways including Hedgehog and Wnt. Primary cilia have previously been described on cells of mouse intervertebral discs (IVDs), but not in bovine or human IVDs. Our aim was to examine primary cilia in these species. Methods.
Introduction. Given the predominant functional role which aggrecan has in the intervertebral disc, particularly within the nucleus pulposus, it is necessary to evaluate the quality of aggrecan produced by cells within tissue engineered disc constructs. The aim here was to characterise the nanostructure of aggrecan synthesised by
Introduction. Current strategies to treat back pain address the symptoms but not the underlying cause. Here we are investigating a novel hydrogel material (NPgel) which can promote MSC differentiation to
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
Study purpose and background. Novel regenerative therapies have the potential to restore function and relieve pain in patients with low back pain (LBP) caused by intervertebral disc (IVD) degeneration. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation into
Introduction. The intervertebral disc (IVD) is a highly hydrated and hyperosmotic tissue, water and salt content fluctuate daily due to mechanical loading. Resident IVD cells must adapt to this ever-changing osmotic environment, to maintain normal behaviour. However, during IVD degeneration the disc becomes permanently dehydrated and cells can no longer perform their correct function. Here, we investigated how human
Background. Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Introduction. During development the central disc contains large, vacuolated notochordal (NC) cells which in humans are replaced by mature
Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to
Introduction. Within the intervertebral disc (IVD),
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus phenotype in different animal models and in
humans and integrates their findings with the anatomical and physiological
differences between these species. Understanding this phenotype
is paramount to guarantee that implanted cells restore the native
functions of the intervertebral disc. Cite this article: