Introduction. Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the
Background. The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms in order to replicate the functionality and stability provided by the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) in the native knee. Recently (2012), a second generation BCS design has introduced femur and tibial bearing modifications that are intended to delay lateral femoral condyle rollback and encourage more stable positioning of the medial femoral condyle to more closely replicate
Total Knee Arthroplasty (TKA), has now become a reliable, successful, and widely used treatment for osteoarthritis. Numerous reports indicate that for the majority of patients, the TKA lasts a lifetime with pain relief and the ability to perform most everyday activities. However there are a number of ways in which the procedure can be further improved, the focus here being on function. One of the problems in evaluating function is that it depends upon the inherent ability, motivation, and expectation of the patients. There are several well-used questionnaire systems which capture functional ability objectively. In the effort to simplify evaluation, a ‘forgotten knee’ evaluation has been introduced, the concept being that ‘the ideal TKA design’ would feel and function like a
Introduction. It is well known that total knee arthroplasty (TKA) does not preserve
The natural knee allows multi-planar freedoms of rotation and translation, while retaining stability in the antero-posterior direction. It allows flexion with roll back, and medial, lateral and central rotation movements. The natural femoral condyles of the knee are spiral, therefore inducing a side to side translatory movement during flexion and extension. Incorporating all these features is vital in successful knee replacement design. The different knee designs currently in use demonstrate different deficiencies in knee function. A study of 150 Posterior Cruciate (PCL) Retaining Total Knee Replacements [1] has shown that in 72% of knees direct impingement of the tibial insert posteriorly against the back of the femur was responsible for blocking further flexion. The mean pre-operative range of flexion was 105° and post-operative was 105.9°. For every 2mm decrease in posterior condylar offset, the maximum flexion was reduced by 12.2°. The major disadvantage of the Posterior Stabilised (PS) Total Knee Replacement is gross anterior to posterior mid-flexion instability [2]. The Medial Rotation Total Knee Replacement is good in mid-flexion but not in high flexion where the femur slides forward on the tibia leading to impingement. The Birmingham Knee Replacement (BKR) is a rotating platform knee design which is stable throughout the range of flexion. In high flexion, the BKR brings the femur to the back of the tibia. The BKR also has spiral femoral condyles, matching the natural kinematics of the knee. The combined static and dynamic effect is 10mm lateral translation of the femur in flexion and vice versa in extension. Results for seventy nine BKRs (in seventy two patients) show the best Oxford Knee Score of 12 at follow up – excluding ten patients whose inferior scores were due to other pathologies. Knee flexion results show a 21° post-operative improvement in range of flexion. On objective independent testing, maximum walking speed is slower for patients with a standard knee replacement (6.5km/h) and the loading through the replaced side does not match the normal side. Comparatively, patients with a BKR have a faster maximum walking speed of 11km/h and the loading closely matches that of the
Background. The overall goal of total knee arthroplasty (TKA) is to facilitate the restoration of native function following late stage osteoarthritis and for this reason it is important to develop a thorough understanding of the mechanics of a
Background:. The literature is unclear about the optimal rotation of the femoral component during TKR. Measured resection techniques rely on the use of bony landmarks, while the balanced gap technique relies on soft tissue tensioning to guide the surgeon in rotating the femoral component. All these techniques still result in a wide range of component rotation. We compared the functional flexion axis (FFA) of 20 replaced knees to that of the contralateral
Background. While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the
Introduction. A common goal of total knee arthroplasty (TKA) is to restore
INTRODUCTION. In living
Introduction. Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the
Background. Although early TKA designs were symmetrical, during the past two decades TKA have been designed to include asymmetry, pertaining to either the trochlear groove, femoral condylar shapes or the tibial component. More recently, a new TKA was designed to include symmetry in all areas of the design, in the hopes of reducing design and inventory costs. Objective. The objective of this study was to determine the in vivo kinematics for subjects implanted with this symmetrical TKA during a weight-bearing deep knee bend activity. Methods. In vivo deep knee bend (DKB) kinematics for 21 subjects implanted with symmetrical posterior cruciate sacrificing (PCS) fixed bearing TKA were obtained using fluoroscopy. A 3D-to-2D registration technique was used to determine each subjects anteroposterior translation of lateral (LAP) and medial (MAP) femoral condyles and tibiofemoral axial rotation and their weight-bearing knee flexion. Results. During the DKB, the average maximum weight-bearing flexion was 111.7° ± 13.3°. On average, from full extension to maximum knee flexion, subjects experienced 2.5 mm ± 2.0 mm femoral rollback on lateral condyle −2.5 mm ± 2.2 mm of medial condyle motion in the anterior direction (Figure 1). This medial condyle motion was consistent for the majority of the subjects with the lateral condyle exhibiting rollback from 0° to 60° of flexion and then an average anterior slide of 0.3 mm from 60° to 90° of flexion. On average, the subjects in this study experienced 6.6° ± 3.3° of axial rotation, with most of rotation occurring in early flexion, averaging 4.9° (Figure 2). Discussion. Although subjects in this study were implanted with a symmetrical TKA, they did experience femoral rollback of the lateral condyle and positive axial rotation. Both of these kinematic parameters were normal-like in pattern, compared to the
Introduction. Previous fluoroscopic studies of total knee arthroplasty (TKA) have revealed significant kinematic differences compared to the
Osteoarthritis (OA) is the fastest growing global health problem, with a total joint replacement being the only effective treatment for patients with end stage OA. Many groups are examining the use of bone marrow or adipose derived mesenchymal stem cells (MSCs) to repair cartilage, or modulate inflammation to promote healing, however, little efficacy in promoting cartilage repair, or reducing patient symptoms over temporary treatments such as micro-fracture has been observed. There is a growing body of literature demonstrating that MSCs derived from the synovial lining of the joint are superior in terms of chondrogenic differentiation and while improvements in clinical outcome measures have been observed with synovial MSCs, results from clinical studies are still highly variable. Based on our results, we believe this variability in clinical studies with MSCs results in part from the isolation, expansion and re-injection of distinct MSCs subtypes in normal vs. OA tissues, each with differing regenerating potential. However, it remains unknown if this heterogeneity is natural (e.g. multiple MSC subtypes present) or if MSCs are influenced by factors in vivo (disease state/stage). Therefore, in this study, we undertook an ‘omics’ screening approach on MSCs from normal and OA knee synovial tissue. Specifically, we characterized their global proteome and genomic expression patterns to determine if multiple MSC from normal and OA joints are distinct at the protein/gene expression level and/if so, what proteins/genes are differentially expressed between MSCs derived from normal and OA synovial tissue. Synovium tissue was collected from OA patients undergoing joint replacement and
In replacing the human knee, we attempt to reproduce the stability of the
INTRODUCTION. In native knees anterior cruciate ligament (ACL) and asymmetric shape of the tibial articular surface with a convex lateral plateau are responsible for differential medial and lateral femoral rollback. Contemporary ACL retaining total knee arthroplasty (TKA) improves knee function over ACL sacrificing (CR) TKA; however, these implants do not restore the asymmetric tibial articular geometry. This may explain why ACL retention addresses paradoxical anterior sliding seen in CR TKA, but does not fully restore medial pivot motion. To address this, an ACL retaining biomimetic implant, was designed by moving the femoral component through healthy in vivo kinematics obtained from bi-planar fluoroscopy and sequentially removing material from a tibial template. We hypothesized that the biomimetic articular surface together with ACL preservation would better restore activity dependent kinematics of
Introduction:. While kinematic abnormalities of contemporary TKA implants have been well established, a solution has not yet been achieved. We hypothesized that contemporary TKA implants are not compatible with normal soft-tissue function and
Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes. Standard deviation maps were created using Geomagic to analyze the error of fit of the implant surface compared to the native femur surface. Results. The average shape model derived from Principal Component Analysis had a discrepancy of 0.01mm and a standard deviation of 0.05mm when compared to Geomagic least squares. The bearing surfaces showed a very close fit within both models with minimal errors at the sides of the epicondylar line (fig 2). The surface components were lined up posteriorly and distally on the 50 femurs. Statistical Analysis of the mesh deviation maps between the femoral condylar surface and the components showed a decrease in deviation with a larger number of sizes reducing from 1.5 mm for a 1-size system to 0.88 mm for a 7-size system (table 1). The femoral components of a 5 or 7-size system showed the best fit less than 1mm. The main mismatch was on the superior patella flange, with maximum projection or undercut of 2 millimeters. Discussion and Conclusion. The study showed an approach to total knee design and technique for a more accurate reproduction of a
Background. Despite the success of total knee arthroplasty (TKA) restoration of normal function is often not achieved. Soft-tissue balance is a major factor leading to poor outcomes including malalignment, instability, excessive wear, and subluxation. Mechanical ligament balancers only measure the joint space in full extension and at 90° flexion. This study uses a novel electronic ligament balancer to measure the ligament balance in
Background. Rotational alignment is important for the long-term success and good functional outcome of total knee arthroplasty (TKA). While the surgical transepicondylar axis (sTEA) is the generally accepted landmark on the distal femur, a precise and easily identifiable anatomical landmark on the tibia has yet to be established. Our aim was to compare five axes on the proximal tibia in normal and osteoarthritic (OA) knees to determine the best landmark for determining rotational alignment during TKA. Methods. One hundred twenty patients with OA knees and 30 without knee OA were recruited for the study. Computed tomography (CT) images were obtained and converted through multiplanar reconstruction so the angles between the sTEA and the axes of the proximal tibia could be measured. Five AP axes were chosen: the line connecting the center of the posterior cruciate ligament(PCL) and the medial border of the patellar tendon at the cutting level of the tibia (PCL-PT), the line from the PCL to the medial border of the tibial tuberosity (PCL-TT1), the line from the PCL to the border of the medial third of the tibia (PCL-TT2), the line from the PCL to the apex of the tibia (PCL-TT3), and the AP axis of the tibial prosthesis along with the anterior cortex of the proximal tibia (anterior tibial curved cortex, ATCC). Results. In OA knees, the mean angles were less than those in