Abstract
Introduction
A common goal of total knee arthroplasty (TKA) is to restore normal knee kinematics. While substantial data is available on TKA kinematics, information regarding non-implanted knee kinematics is less well studied especially in larger patient populations. The objectives of this study were to determine normal femorotibial kinematics in a large number of non-implanted knees and to investigate parameters that yield higher knee flexion with weight-bearing activities.
Methods
Femorotibial kinematics of 104 non-implanted healthy subjects performing a deep knee bend (DKB) activity were analyzed using 3D to 2D fluoroscopy. The average age and BMI were 38.1±18.2 years and 25.2±4.6, respectively. Pearson correlation analysis was used to determine statistical correlations.
Results
On average, subjects experienced 21.5±7.2 mm, 13.8±8.9 mm, and 27.1°±12.1° of lateral rollback, medial rollback, and external femorotibial axial rotation, respectively (Figure 1). Most rollback occurred in early flexion, with 10.2±6.4 mm and 5.3±6.3 mm of rollback for the lateral and medial condyles, respectively. While the lateral condyle consistently moved posteriorly, the medial condyle experienced 1.8±4.8 mm of anterior sliding between 90° to 120° of flexion. There was a positive correlation between higher weight-bearing flexion and lateral condylar rollback (r=0.5480, p<.0001) (Figure 2), medial condylar rollback (r=0.3188, p=0.001) (Figure 3), and external axial rotation (r=0.5505, p<.0001) (Figure 4). There was an inverse correlation between advancing age and knee flexion (r=-0.7358, p<.0001) as well as higher BMI and flexion (r=-0.3332, p=0.0007), indicating that multiple factors contribute to postoperative range-of-motion.
Conclusion
This represents one of the largest studies on normal knee femorotibial kinematics in non-implanted healthy subjects. These results indicate that increased condylar rollback and external axial rotation correlate with increased weight-bearing knee flexion, while increased age and BMI yield decreased flexion. Therefore, in order to achieve higher weight-bearing flexion following TKA, normal-like kinematics such as high rollback and external axial rotation should be incorporated into TKA design.
For any figures or tables, please contact the authors directly.