In orthopedic surgery, implant infections are a serious issue and difficult to treat. The aim of this study was to use superparamagnetic nanoporous silica
Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt
Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt
MiRNAs perform gene regulation that can target approximately 60% of human protein coding genes. Along with many cellular processes, miRNAs have been implicated in stem cell differentiation. Osterix (Osx), which is inhibited by mir-31, is required by MSCs for early osteoblast differentiation resulting in bone formation further downstream. We used antagomir functionalised gold
Photodynamic therapy (PDT) uses the strong cytotoxicity of singlet oxygen and hyperthermia produced by irradiating excitation light on a photosensitizer. The phototoxic effects of indocyanine green (ICG) and near-infrared light (NIR) have been studied in different types of cancer cells. Plasma proteins bind strongly to ICG, followed by rapid clearance by the liver, resulting in no tumor-selective accumulation after systemic administration. Kimura et al. have proposed using a novel
Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic
In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate
Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted
Abstract. OBJECTIVES. Osteoarthritis therapies are limited to symptom management and joint replacement. AMPA/kainate glutamate receptor (GluR) antagonists (NBQX/DNQX, 2.5–20mM) alleviate symptoms and disease in rodent models of osteoarthritis. We hypothesised that poly(lactic-co-glycolic) acid (PLGA)
Although 80% of fractures typically heal without any problems, there is a small proportion (<20%) that suffer complications such as delayed healing and potential progression to non-union. In patients with healing complications, the coordinated regulation between pro- and anti-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) respectively, is often dysregulated. The aim of this study is to develop a therapeutic strategy based on the local delivery of genes to reparative mesenchymal stromal cells (MSCs) migrating into the local fracture microenvironment, thereby promoting a more favourable healing environment to enhance fracture repair. Our approach involves the local delivery of
Silver
Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite
The AMPA/kainate glutamate receptor (GluR) antagonist NBQX reduced bone destruction when injected intra-articularly, in rat antigen induced arthritis (AIA) and is similarly protective in rodent models of osteoarthritis. NBQX reduced bone turnover in vivo and reduced mineralization in human primary osteoblasts (HOBs) in vitro. We are developing sustained release GluR antagonist delivery methods, to improve therapeutic effect. DNQX loaded Poly(lactic-co-glycolic acid) (PLGA)
Functionalization of biomimetic nanomaterials allows to reproduce the composition of native bone, permitting better regeneration, while nanoscale surface morphologies provide cues for cell adhesion, proliferation and differentiation. Functionalization of 3D printed and bioprinted constructs, by plasma-assisted deposition of calcium phosphates-based (CaP) nanostructured coatings and by
Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA. Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and
Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients. Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide. We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive
MicroRNA (miR) delivery to regulate chronic inflammation hold extraordinary promise, with new therapeutic possibilities emanating from their ability to fine-tune multiple target gene regulation pathways which is an important factor in controlling aberrant inflammatory reactions in complex multifactorial disease. However, several hurdles have prevented advancements in miR-based therapies. These include off-target effects of miRs, limited trafficking, and inefficient delivery. We propose a magnetically guided nanocarrier to transport therapeutically relevant miRs to assist self- resolving inflammation processes at injury sites and reduce the impact of chronic inflammation- related diseases such as tendinopathies. The high prevalence, significant socio-economic burden and increasing recognition of dysregulated immune mediated pathways in tendon disease provide a compelling rationale for exploring inflammation-targeting strategies as novel treatments in this condition. By combining cationic polymers, miR species (e.g., miR 29a, miR155 antagonist), and magnetic
Recent studies suggested that both the soluble protein of the mesenchymal stromal cell (MSC) secretome, as well as the secreted extracellular vesicles (EVs) promote bone regeneration. However, there is limited knowledge of the changes in MSC secretome vesicular fraction during aging. We therefore aimed to characterize the release profiles and cargo of EVs from MSCs of different chronological ages. Conditioned medium (CM) was collected from 13 bone marrow MSC strains (20-89 years) and from one MSC strain derived from human induced pluripotent stem cells (iPSCs). The EV-containing fraction was enriched with ultracentrifugation. The number of particles in the CM was evaluated by
Bone defects and fractures, caused by injury, trauma or tumour resection require hospital treatment and temporary loss of mobility, representing an important burden for societies and health systems worldwide. Autografts are the gold standard for promoting new bone formation, but these may provide insufficient material and lead to donor site morbidity and pain. We previously showed that Fibrinogen (Fg) scaffolds promote bone regeneration in vivo (1), and that modifying them with 10mM of Magnesium (Mg) ions modulates macrophage response in vitro and in vivo (2). Also, we showed that Extracellular Vesicles (EV) secreted by Dendritic Cells (DC) recruit Mesenchymal Stem/Stromal Cells (MSC)(3). Herein, we aim to functionalize FgMg scaffolds with DC-EV, to promote recruitment and osteogenic differentiation of MSC. Scaffolds were produced by freeze-drying (2). Ethical permission was sought for all studies. Primary human peripheral blood monocyte-derived DC were cultured, their secreted EV were isolated by differential (ultra)-centrifugation and characterised by transmission electron microscopy and