Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 212 - 212
1 Jul 2014
Suen P He Y Chow D Huang L Li C Ke H Qin L
Full Access

Summary Statement. This study demonstrated that Sclerostin monoclonal antibody (Scl-Ab) enhanced bone healing in the rat osteotomy model. Scl-Ab increased callus size, callus bone volume fraction, rate of callus bone formation and fracture callus strength. Introduction. Sclerostin is a protein secreted by osteocytes and is characterized as a key inhibitor of osteoblast-mediated bone formation. Previous studies demonstrated that treatment with a sclerostin monoclonal antibody (Scl-Ab) results in significantly increased bone formation, bone mass and strength in rat closed fracture model (1–2). However, the effects of Scl-Ab on healing of open fracture model have not yet been reported in rats. Previously in ORS and ASBMR Annual Meeting, we have reported that Scl-Ab promoted the open fracture healing at week 3 and week 6 post-fracture. Here we extended our investigation for up to week 9 with additional histological assessments and dynamic histomorphometric analysis to investigate the effects of systemic administration of Scl-Ab on a later phase of fracture repair. Patients & Methods. Animal research ethics approval was obtained from our institute (reference No. 09/042/MIS), and the institute's guidelines for the care and use of laboratory animals were followed. In total, 120 six-month-old male SD rats were randomly divided into Scl-Ab group and vehicle group after a transverse osteotomy performed at the mid-shaft of right femur with internal fixation. One day post-surgery, rats were treated with a rodent Scl-Ab (Scl-Ab IV, s.c. injection, 25 mg/kg, 2 times per week) or vehicle for 3, 6 or 9 weeks. The progress of fracture healing for each animal was monitored weekly by digital radiography. Images acquired 3, 6 and 9 weeks post-operation were analyzed by ImageJ to quantify the total area of the fracture calluses. After euthanasia, femora were collected and subjected to the following analyses: micro-CT for bone mineral density (BMD) and callus volume fraction (BV/TV), micro-CT-based angiography for angiogenesis, histological evaluation and dynamic histomorphometry, and four-point mechanical testing for ultimate load, energy to failure and stiffness (3–6). Two-way ANOVA with Bonferroni post-hoc test was used to analyze the data. Significance level was set at P<0.05. Results. Radiographically, Scl-Ab treatment groups had significantly larger fracture calluses compared with respective vehicle group starting from week 3 post-fracture by quantitative analysis. Micro-CT analysis showed that Scl-Ab treatment groups had significantly higher callus bone volume fraction (+16–23%, P<0.01) and BMD (+15–16%, P<0.01) compared with respective vehicle groups at all time points post-fracture. Histological analysis also revealed more bone and less cartilage tissue in calluses in Scl-Ab group starting at week 3, which is explained by faster in the rate of new bone formation in fluorescence microscopy. Micro-CT based angiography demonstrated that Scl-Ab significantly enhanced neovasculation at the fracture calluses at week 3. Four-point bending test showed significantly higher ultimate load in Scl-Ab group than vehicle group at week 6 (+98%, P<0.01) and week 9 (+45%, P<0.05) post-fracture. In addition, ultimate load at week 6 of Scl-Ab group was at the similar level as seen at week 9 of the vehicle group, indicating the increased healing by Scl-Ab in this model. Stiffness (week 6 and 9) and energy to failure (week 6) were also tended higher in Scl-Ab group. Discussion/Conclusion. This study demonstrated that Scl-Ab enhanced bone healing in the rat osteotomy model. Scl-Ab increased callus size, callus bone volume fraction, rate of callus bone formation and fracture callus strength. Neovasculation was enhanced in the Scl-Ab group at week 3, implying Scl-Ab may enhance coupling of osteogenesis and angiogenesis. Scl-Ab treatment also resulted in more bone and less cartilage tissue in fracture calluses. Our results indicated that the systemic administration of Scl-Ab enhanced open fracture healing in rat femoral osteotomy model


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2019
Mawdesley A Tyson-Capper A Kirby J Tipper JL
Full Access

Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines/chemokines e.g. CCL3 and CCL4. The aim of this study was to evaluate whether TLR4-specific neutralising antibodies can prevent cobalt-mediated activation of TLR4. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with two different TLR4-specific monoclonal antibodies followed by 0.75mM of cobalt chloride (CoCl2). Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess CCL3/CCL4 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of CCL3/CCL4 gene expression. MM6 cells treated with cobalt and LPS up-regulate CCL3 and CCL4 gene expression and protein secretion. MM6 cells pre-treated with both monoclonal antibodies prior to stimulation with 0.75mM CoCl2 for 16 hours demonstrated significant inhibition of both CCL3 and CCL4 secretion as well as gene expression (both p=<0.0001). One of the antibodies failed to inhibit chemokine expression and secretion in LPS treated cells. This study identifies for the first time the use of TLR4-specific monoclonal antibodies to prevent cobalt activation of TLR4 and subsequent inflammatory response. This finding demonstrates the potential to exploit TLR4 inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to reduce the incidence of ARMD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 30 - 30
14 Nov 2024
Schröder M Gens L Arens D Giger N Gehweiler D Nehrbass D Zderic I Zeiter S Stoddart M Wehrle E
Full Access

Introduction. Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. Method. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a collagen sponge, a collagen sponge+1μg BMP-2 (InductOs, Medtronic) or a collagen sponge+1μg BMP-2 with a monoclonal anti-IL-1ß antibody (BioXCell, 10 mg/ml), administered intravenously under anesthesia every third day until day 15, from day 0 or 3. In vivo micro-CT was performed after surgery and at 2, 3, 4, 6, 8, 10 and 14-weeks post-OP. Mechanical properties of the operated femurs were assessed by 4-point bending (Instron5866) and compared to contralateral femurs (one-way ANOVA, GraphPad Prism8). Histopathological analysis was performed semi-quantitatively on Giemsa-Eosin-stained sections (Olympus BX63) using a six-grade severity grading scale. Result. Operated femurs with BMP-2 reached an average stiffness of 91±37% of contralateral femurs, femurs in IL-1ß groups 105±11% (day 0) and 111±12% (day 3). Administration of anti-IL-1ß+1μg BMP-2 led to faster cortical bridging (3/4 femurs bridged by week 4 for day 0, 4/4 for day 3) than 1μg BMP-2 alone (0/4 by week 4). Micro-CT results confirmed histopathological evaluation, as collagen sponge alone led to non-union, complete bicortical bridging was observed for 3/4 femurs in the BMP-2 group and for 4/4 femurs in the IL-1β groups after 14 weeks. Conclusion. Anti-IL-1ß had a beneficial effect on late fracture healing with faster cortical bridging and new bone formation than 1μg BMP-2 alone. Acknowledgments. AO foundation. We thank Andrea Furter, Alisa Hangartner and Thomas Krüger for technical support


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 87 - 87
2 Jan 2024
Vargel I Açil M Tuncel S Baysal N Hartuç I Okur H Korkusuz F
Full Access

Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using enzymes requires sophisticated biomedical instruments. Applied pressure on tissues and cells are adjusted manually although centrifugation and filtration systems are frequently used. The number of derived MSCs therefore could differ between instruments. We compared the number of MSCs obtained from four commercially available devices and our newly designed and produced instrument (A2, B3, L3, M2 and T3). Three-hundred mL of adipose tissue was obtained from a female patient undergoing liposuction using the transillumination solution. Obtained tissue was equally distributed to each device and handled according to the producers' guides. After handling, 3 mL stromal vascular fraction (SVF) was obtained from each device. Freshly isolated SVF was characterized using multi-color flow cytometry (Navios Flow Cytometer, Beckman Coulter, USA). Cell surface antigens were chosen according to IFATS and ISCT. CD31-FITC, CD34-PC5,5, CD73-PE, CD90-PB and CD45-A750 (Backman Coulter, USA) fluorochrome-labeled monoclonal antibodies were assessed. Markers were combined with ViaKrome (Beckman Coulter, USA) to determine cell viability. At least 10. 5. cells were acquired from each sample. A software (Navios EX, Beckman Coulter, USA) was used to create dot plots and to calculate the cell composition percentages. The data was analyzed in the Kaluza 2.1 software package (Beckman Coulter, USA). Graphs were prepared in GraphPad Prism. CD105 PC7/CD31 FITC cell percentages were 23,9%, 13,5%, 24,6%, 11,4% and 28,8% for the A2, B3, L3, M2 and T3 devices, respectively. We conclude that the isolated MSC percentage ranged from 11,4% to 28,8% between devices. The number of MSCs in SVF are key determinants of success in orthobiological treatments. Developing a device should focus on increasing the number of MSCs in the SVF while preserving its metabolic activity. Acknowledgments: Scientific and Technological Research Council of Türkiye (TÜBİTAK)- Technology and Innovation Funding Program Directorate (TEYDEB) funded this project (#321893). Servet Kürümoğlu and Bariscan Önder of Disposet Ltd., Ankara, Türkiye (. www.disposet.com. ) contributed to the industrial design and research studies. Ali Tuncel and Feza Korkusuz are members of the Turkish Academy of Sciences (TÜBA). Nilsu Baysal was funded by the STAR Program of TÜBITAK Grant # 3210893


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 13 - 13
2 Jan 2024
Teixeira S Pardo A Bakht S Gomez-Florit M Reis R Gomes M Domingues R
Full Access

Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis. Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies. Acknowledgements: The authors acknowledge the funding from the European Union's Horizon 2020 under grant No. 772817; from FCT/MCTES for scholarships PD/BD/143039/2018 & COVID/BD/153025/2022 (S.P.B.T.), and PD/BD/129403/2017 (S.M.B.), co-financed by POCH and NORTE 2020, under the Portugal 2020 partnership agreement through the European Social Fund, for contract 2020.03410.CEECIND (R.M.A.D.) and project 2022.05526.PTDC; and from Xunta de Galicia for grant ED481B2019/025 (A.P.)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 31 - 31
1 Nov 2021
Barry F
Full Access

Osteoarthritis (OA) is a major global disease with increasing prevalence. It is one of the most significant causes of disability worldwide and represents a major burden in terms of healthcare delivery and impact on the quality of life of patients. It is a cause of severe chronic pain and has given rise to alarming levels of opioid use and addiction. Despite this prevalence, there are no disease-modifying treatments which delay or reverse the degrative changes within joints which are characteristics of the disease. All treatments are symptom-modifying with the exception of joint arthroplasty, which is currently the most common surgical procedure carried out in US hospitals. Several pharmaceutical and biological interventions have been tested in recent years, including metalloproteinase inhibitors, chondrogenic agents such as Kartogenin, IL-1 antagonists and monoclonal antibodies. So far, none of these has provided an effective disease-modifying treatment. Cellular therapies have a great deal of promise because of their anti-inflammatory and regenerative effects. Mesenchymal stromal cells (MSCs) have been widely studied as a treatment for OA in preclinical and clinical assessments with generally positive results. As the clinical testing of these cells proceeds serious questions emerge relating to the quality and consistency of the therapeutic product and the need for better standardisation with regard to, for example, the tissue source and expansion conditions. Of equal importance is the need for deeper insight into the therapeutic mechanism, specifically the activity and phenotype of cells transplanted to the OA environment, their fate and interaction with local cells


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 81 - 81
1 May 2012
Quasnichka H Kerr B Wright A Roberts S Hughes C Caterson B
Full Access

Fragmentation of SLRPs, including decorin, biglycan, lumican, keratocan and fibromodulin, has been shown to occur in osteoarthritic articular cartilage. We have previously shown an increased expression of lumican and keratocan, in osteoarthritic articular cartilage. The long-term aim of this project is to develop ELISAs for the detection of SLRP metabolites, and validate these potential biomarkers with synovial fluid and serum samples from a large cohort of normal and osteoarthritic patients. Initially, we aimed to determine whether SLRPs could be detected in synovial fluid and whether they were post-translationally modified with glycosaminoglycan (GAG) attachments; and whether bovine nasal cartilage (BNC) would be a plentiful source of native SLRP for ELISA development. Proteoglycans were extracted from BNC in guanidine hydrochloride. BNC extract and bovine synovial fluid was separated on an associative CsCl gradient. BNC CsCl cuts containing sulphated GAG were further purified using anion exchange chromatography. SLRPs in each fraction were detected using Western Blotting. Human recombinant lumican was expressed in Chinese hamster ovary (CHO) cells. Monoclonal antibodies that recognise epitopes on the core protein of human and bovine lumican and decorin were purified from hybridoma media using Protein G and Protein A affinity chromatography respectively. Monoclonal antibody activity against native and recombinant SLRPs was then determined using a direct ELISA. Preliminary tests showed that bovine synovial fluid contains keratocan and lumican with GAG attachments. BNC is a good source of post-translationally modified decorin, keratocan and biglycan but lumican was present predominantly without GAG attachments. Human recombinant lumican was successfully expressed with GAG attachments by CHO cells. Initial tests showed that the mAb against decorin was able to detect native decorin, with GAG attachments, in direct ELISA conditions. We have identified a plentiful source of native SLRP and begun ELISA development to ascertain whether these proteoglycans are potential biomarkers of OA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 34 - 34
1 Nov 2018
Lian W Ko J Wang F
Full Access

Sclerostin (SOST) is an endogenous inhibitor of Wnt/β-catenin signalling pathway to impair osteogenic differentiation and bone anabolism. SOST immunotherapy like monoclonal antibody has been observed to control bone remodeling and regeneration. This study is aimed to develop a SOST vaccine and test its protective effects on estrogen deficiency-induced bone loss in mice. Gene sequences coded SOST peptide putative targeting Wnt co-receptor LRP5 were cloned and constructed into vectors expressing Fc fragment to produced SOST-Fc fusion protein. Mice were subcutaneously injected SOST-Fc to boost anti-SOST antibody. Bone mineral density, microstructure, and mechanical property were quantified using μCT scanning and material testing system. Serum bone formation and resorption markers and anti-SOST levels were measured using ELISA. SOST-Fc injections significantly increased serum anti-SOST antibody levels but reduced serum SOST concentrations. SOST-Fc vaccination significantly reduced estrogen deficiency-induced serum bone resorption markers CTX-1 increased serum bone formation marker osteocalcin. Of note, it significantly alleviated the severity of estrogen-induced loss of bone mineral density, trabecular morphometric properties, and biomechanical forces of bone tissue. Mechanistically, SOSF-Fc vaccination attenuated trabecular loss histopathology and restored immunostaining of Wnt pathway like Wnt3a, β-catenin, and TCF4 in bone tissue along with increased serum osteoclast inhibitor OPG levels but decreased serum osteoclast enhancer RANKL concentrations. Taken together, SOST-Fc vaccination boosts anti-SOST antibody to neutralize SOST and mitigates the estrogen deficiency-induced bone mass and microstructure deterioration through preserving Wnt signalling. This study highlights an innovative remedial potential of SOST vaccine for preventing osteoporosis


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 607 - 612
1 May 2004
Asano N Yamakazi T Seto M Matsumine A Yoshikawa H Uchida A

We investigated the rates of expression of bone morphogenetic protein-2 (BMP-2) in 29 adult patients with high-grade malignant fibrous histiocytoma of soft tissue, using the BMP-2-specific monoclonal antibody, AbH3b2/17, and found that they ranged from 1.9% to 78.9%. The survival at five years of the groups expressing high (≥30%) and low (< 30%) levels of BMP-2 was 85.7% and 36.3%, respectively. Multivariable analysis showed that only BMP-2 had prognostic significance for continuous disease-free survival and for overall survival (p < 0.05). Our findings indicate that over-expression of BMP-2 in malignant fibrous histiocytoma of soft tissue is the most reliable prognostic indicator of the parameters assessed


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 340 - 340
1 Jul 2014
Vadalà G Musumeci M Giacalone A Russo F Denaro V
Full Access

Summary Statement. Intra-articular injection of humanised monoclonal anti-VEGF antibody (Bevacizumab, Avastin®) in a osteoarthritis rabbit model is related to positive restorative effects in terms of histopathologic evaluation. Introduction. Vascular endothelial growth factor (VEGF) is generally undetectable in adult human articular cartilage under physiological conditions. Upon exposure to pathological stimulation such as inflammation, hypoxia or accumulating mechanical stress, VEGF would be up regulated in hypertrophic chondrocytes of arthritic cartilage leading to osteophyte formation, disregulation of chondrocyte apoptosis and induction of catabolic factors, including matrix metalloproteinases (MMPs). This in vivo study aims to investigate the potential role of VEGF inhibition to treat Osteoarthritis (OA), through intra-articular injection of Bevacizumab, a humanised monoclonal anti-VEGF antibody, in a OA rabbit model. Methods. OA was induced in twelve adult male New Zealand rabbits surgically by monolateral Anterior Cruciate Ligament Transection (ACLT). The rabbits were randomly divided into two equal groups (experimental and control). Intra-articular injections of Bevacizumab or saline (control) were given 4 weeks after ACLT and were administered once a week for 4 time. Animal were sacrificed at 2 and 3 month time point an knee analyzed histologically and grossly. Histopathological variables such as the number of fibroblasts and inflammatory cells, collagenous matrix deposition, synovial hyperplasia, granulation tissue formation, vascular proliferation were evaluated. Results:The macroscopic evaluation of the knee in the experimental group revealed smooth joint surfaces of articular cartilage and no osteophyte formation compared to the control group that showed marked arthritis including synovial hypertrophy and osteophyte formation. Histologic assessment demonstrated, in the experimental group, significantly higher scores concerning number of microvessels, synovial hyperplasia, macrophage infiltration, collagenous matrix deposition, chondrocytes proliferation and apoptosis compared to the control group. Conclusion. In conclusion, VEGF modulation via intra-articular injection of Bevacizumab in a rabbit model of knee OA, resulted in reduction of articular cartilage degeneration through setting up an appropriate environment that prevent chondrocyte hypertrophy, apoptosis and osteophytes formation by blocking the intrinsic VEGF catabolic pathway, endochondral ossification, and the extrinsic VEGF-induced vascular invasion. VEGF-signaling inhibtion through Bevacizumab represent a potential way to treat OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 100 - 100
1 Jan 2017
García-Alvarez F Desportes P Estella R Alegre-Aguarón E Piñas J Castiella T Larrad L Albareda J Martínez-Lorenzo M
Full Access

Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases. The objetive was to analyze different sources of human MSCs to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. Femoral bone marrow, adipose tissue from articular and subcutaneous locations (hip, knee, hand, ankle and elbow) were obtained from 35 patients who undewent different types of orthopedic surgery (21 women, mean age 69.83 ± 13.93 (range 38–91) years. Neoplasic and immunocompromised patients were refused. The Ethical Committee for Clinical Research of the Government of Aragón (CEICA) approved the study and all patients provided informed consent. Cells were conjugated wiith monoclonal antibodies. Cell fluorescence was evaluated by flow cytometry using a FACSCalibur flow cytometer and analysed using CellQuest software (Becton Dickinson). Chondrogenic differentiation of human MSCs from the various tissues at P1 and P3 was induced in a 30-day micropellet culture [Pittenger et al., 1999]. To evaluate the differentiation of cartilaginous pellet cultures, samples were fixed embedded in paraffin and cut into 5- υm-thick slices. The slices were treated with hematoxylin-eosin and safranin O (Sigma-Aldrich). Each sample was graded according to the Bern Histological Grading Scale [Grogan et al., 2006], which is a visual scale that incorporates three parameters indicative of cartilage quality: uniform and dark staining with safranin O, cell density or extent of matrix produced and cellular morphology (overall score 0–9). Stained sections were evaluated and graded by two different researchers under a BX41 dual viewer microscope or a Nikon TE2000-E inverted microscope with the NIS-Elements software. Statistics were calculated using bivariate analysis. Pearson's χ2 or Fisher's exact tests were used to compare the Bern Scores of various tissues. To evaluate the cell proliferation, surface marker expression and tissue type results, ANOVA or Kruskal-Wallis tests were used, depending on the data distribution. Results were considered to be significant when p was < 0.05. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat derived MSCs proliferated faster than bone marrow. MSCs from Hoffa fat, hip and knee subcutaneous proliferated slower than MSCs from elbow, ankle and hand subcutaneous. Flow cytometry: most of cells lacked expression of CD31, CD34, CD36, CD117 (c-kit), CD133/1 and HLA-DR. At same time 95% of cells expressed CD13, CD44, CD59, CD73, CD90, CD105, CD151 y CD166. Fenotype showed no differences in cells from different anatomic places. Cells from hip and knee subcutaneous showed a worst differentiation to hyaline cartilage. Hoffa fat cells showed high capacity in transforming to hyaline cartilage. Cells from different anatomic places show different chondrogenic potential that has to be considered to choose the cells source


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 338 - 338
1 Jul 2014
Wang F Wang L Ko J
Full Access

Summary Statement. Increased Dkk-1 signaling is associated with OA occurrence and joint microenvironment damage. Interruption of Dkk1 action is beneficial to improve OA knees. Introduction. Osteoarthritis (OA) is a leading cause of disability and healthcare financial burden for total knee arthroplasty, rehabilitation, and disability. Inappropriate mechanical stress, immunological, or biochemical regulation reportedly disturbs homeostasis among cartilage, synovium and subchondral bone microstructure that contributes to OA pathogenesis. Control of joint-deleterious factor action is an emerging strategy to ameliorate OA-induced joint deterioration. Dickkopf-1 (Dkk-1) is a potent inhibitor for Wnt/β-catenin signaling regulation of tissue development and remodeling in physiological or pathological contexts. Dkk-1 also acts as a master deleterious factor that represses osteoblast differentiation capacity and bone repair. Associations among Dkk-1 expression, chondrocyte fate, synovial fibroblast behavior or OA incidence are merit of characterization. Patients & Methods. Cartilage, synovial tissue and fluid were harvested from informed consent OA patients underwent arthroplasty and patient with knee injuries without OA changes as controls. Primary chondrocyte cultures and synovial fibroblasts were treated with inflammatory cytokines or Dkk-1 antisense oligonucleotide or monoclonal antibodies. Knees in experimental animals were subjected to anterior cruciate ligament transection- or intra-articular collagenase injection to induce OA. Joint inflammation, integrity and subchondral bone microstructure in knees as well gait profiles were quantified using 2-deoxyglucose-probed near-infrared in vivo image, µCT, catwalk and histomorphometric analyses. Results. In clinical vignettes, patients with end-stage OA knee had higher abundances of Dkk-1 in cartilage, synovial tissue, and synovial fluid compared to control patients. Disruption of DKk-1 signaling ameliorated the promoting effects of inflammatory cytokines on the survival and cartilage matrix synthesis in primary cartilage chondrocyte cultures. Of interest, Dkk-1 neutralization attenuated the excessive angiogenic activities and matrix metalloproteinase secretion in primary synovial fibroblasts of OA knees. Dkk-1 modulation of survival or metabolic activities in chondrocytes and synovial fibroblasts were through β-catenin-dependent and -independent signaling pathways. Moreover, increased Dkk-1 expression in lesion sites and sera was associated with the incidence of femoral head osteonecrosis. Loss of Dkk-1 action alleviated bone cell apoptosis in osteonecrotic bone microenvironments. In experimental OA knee models, knockdown of Dkk-1 alleviated articular cartilage damage as evidenced by improved Mankin score in OA knees. Dkk-1 disruption also alleviated the adverse effects of OA on subchondral bone exposure and loss of trabecular bone volume and mineral acquisition in injured joints. Loss of Dkk-1 function reduced joint inflammation, vessel number, leukocyte infiltration in synovium compartment of OA joint and improved gait profiles of affected limbs. Conclusion. Dkk-1 signaling is associated with the OA knee occurrence and accelerates apoptosis, matrix degradation and angiogenic activities in chondrocytes and synovial fibroblasts of OA joint. Dkk-1 interference alleviates the promoting effects of OA on cartilage, synovial and subchondral bone remodeling. Blocking the deleterious actions of Dkk-1 in joint microenvironment will be a prospective molecular regime beneficial for retarding excessive joint deterioration in OA knees


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 287 - 287
1 Jul 2014
Semevolos S Kinsley M Duesterdieck-Zellmer K Riddick T
Full Access

Summary Statement. Differential expression of canonical and noncanonical Wnt signalling along cartilage canals and osteochondral junctions is dependent on age. Increased gene expression of PTHrP along cartilage canals and Ihh along osteochondral junctions suggests paracrine feedback in articular-epiphyseal cartilage. Introduction. Wnt signaling has been shown to regulate chondrocyte differentiation during pre-/post-natal cartilage development. In addition, parathyroid-related peptide(PTHrP) and Indian hedgehog(Ihh) create a negative feedback loop in growth cartilage, but less is known in articular cartilage. The objective of this study was to elucidate expression of regulatory molecules in chondrocytes surrounding cartilage canals and osteochondral junctions during neonatal and pre-adolescent development. We hypothesised there would be increased expression of canonical Wnt signalling molecules and Ihh in osteochondral junction chondrocytes compared to cartilage canal chondrocytes. In addition, we hypothesised that Wnt signaling and PTHrP expression would be greater in neonates than pre-adolescents. Patients & Methods. Osteochondral samples were obtained(IACUC-approved) from normal femoropatellar joints of 14 euthanised immature horses(6 neonates, 8 pre-adolescents). Samples were frozen in OCT for laser capture microdissection(LCM) or fixed in 4% paraformaldehyde and paraffin-embedded for immunohistochemistry. Chondrocytes surrounding cartilage canals and osteochondral junctions were captured using LCM. Following RNA isolation, equine-specific β-catenin, Wnt-4, Wnt-5b, Wnt-11, Dickkopf-1(Dkk-1), low-density lipoprotein receptor-related protein-4,-6(Lrp4, Lrp6), Axin1, Wnt inhibitory factor-1(WIF)-1, secreted Frizzled-related protein-1,-3,-5(sFRP), retinoic acid receptor gamma(RARG), RAR-inducible serine carboxypeptidase(SC-PEP), Ihh, PTHrP, VEGF, PDGF, MMP-13, and 18S mRNA expression levels were evaluated by two-step real-time qPCR. Following immunohistochemistry using rabbit polyclonal or mouse monoclonal primary antibodies (confirmed by Western blot), spatial tissue protein expression was scored (0–3). Statistical analysis included Wilcoxon signed rank test(paired samples) or rank sum test(unpaired samples)(P<0.05). Results. Gene expression in chondrocytes along cartilage canals was significantly higher for PTHrP, β-catenin, Lrp6, Axin1, sFRP5, RARgamma, and SC-PEP than osteochondral junctions. Conversely, gene expression of Ihh, Wnt4, Wnt11, sFRP3, and VEGF were higher in osteochondral junction chondrocytes than cartilage canals. There was higher protein expression of β-catenin, PDGF, VEGF, and MMP-13 along osteochondral junctions than cartilage canals of pre-adolescents. Neonates had higher gene expression of PTHrP, Wnt-5b, sFRP3, Lrp6, and RARG in cartilage canal chondrocytes than pre-adolescents, while Ihh, Wnt-11, Lrp4, and Dkk1 were significantly higher in pre-adolescents. Immunostaining was higher for β-catenin and Wnt-11 in pre-adolescent osteochondral junction cartilage than neonates. No differences were found between age groups for Wnt-4 immunostaining. Dkk1 protein expression was significantly higher in the middle cartilage layer of pre-adolescents than neonates. Immunostaining was greater for Ihh and PTHrP in the deep cartilage layer of pre-adolescents than neonates. PDGF, VEGF, and MMP13 protein expression was higher in the superficial cartilage layer of pre-adolescents than neonates. Discussion. Wnt/β-catenin and Ihh/PTHrP signaling regulate cartilage differentiation during development and are important in endochondral ossification. This study revealed cell-specific, age-related differences in gene/protein expression of both regulatory pathways. Cells surrounding cartilage canals typically appeared small/rounded compared to larger chondrocytes along osteochondral junctions, likely due to different developmental stages. Higher PTHrP gene expression along cartilage canals and Ihh expression along osteochondral junctions may reflect these stages, suggesting paracrine feedback in articular-epiphyseal cartilage. β-catenin signaling may induce chondrocyte hypertrophy, potentially by enhancing Ihh and MMP-13 expression. Differential expression of canonical(β-catenin, Wnt-4, Lrp4, Lrp6) and noncanonical Wnt signalling(Wnt-5b, Wnt-11) and Wnt inhibitors (Dkk1, Axin1, sFRP3, sFRP5, Wif-1) surrounding cartilage canals and osteochondral junctions provides evidence of age-related interactions during postnatal development


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 682 - 687
1 May 2006
Kanazawa T Soejima T Murakami H Inoue T Katouda M Nagata K

We studied bone-tendon healing using immunohistochemical methods in a rabbit model.

Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically.

Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (sd 4.5) versus 12.7% (sd 2.9, p < 0.019), respectively.

Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel.

The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1019 - 1023
1 Jul 2005
Shimogaki K Yasunaga Y Ochi M

Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and histological studies of the articular cartilage were made.

In the hips which did not undergo osteotomy, radiographs at 26 weeks showed that residual subluxation remained and arthritic changes such as narrowing of the joint space or dislocation were still seen. However, in the operated group there was a remarkable increase in cover, but arthritic changes were not observed. After 24 weeks, the Mankin grading score in the operated group was significantly lower than that in the non-operated group. The latter hips showed an irregular surface of the cartilage, exfoliation and proliferation of synovial tissue. In those undergoing osteotomy, primary cloning of chondrocytes or hypercellularity was seen and at 24 weeks after operation and metaplasia of the cartilage in the fibrous tissue was observed in the boundary between the medial area of the acetabulum and the acetabular fossa.