This prospective five-year study analyses the impact of
The objective of this study was to determine the effectiveness of screening and successful treatment of
Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic
We examined the rates of infection and colonisation by
Aim. Treatment of prosthetic joint infection (PJI) by systemic administration of high doses of long-term antibiotics often proves ineffective, causing severe side effects. Thus, we presented the phage Sb-1, which coding extracellular polymeric substances (EPS) degradation depolymerases, conjugated with rifampicin-loaded liposomes (Lip-RIF@Phage) by bio-orthogonal functionalization strategy to target biofilm (Figure1). Method.
Aim. Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for
Aim. Antibiotics have limited activity in the treatment of multidrug-resistant or chronic biofilm-associated infections, in particular when implants cannot be removed. Lytic bacteriophages can rapidly and selectively kill bacteria, and can be combined with antibiotics. However, clinical experience in patients with surgical infections is limited. We investigated the outcome and safety of local application of bacteriophages in addition to antimicrobial therapy. Method. 8 patients (2 female and 6 male) with complex orthopedic and cardiovascular infections were included, in whom standard treatment was not feasible or impossible. The treatment was performed in agreement with the Article 37 of the Declaration of Helsinki. Commercial or individually prepared bacteriophages were provided by ELIAVA Institute in Tbilisi, Georgia. Bacteriophages were applied during surgery and continued through drains placed during surgery three times per day for the following 5–14 days. Follow-up ranged from 1 to 28 months. Results. Median age was 57 years, range 33–75 years. Two patients were diagnosed with a persistent knee arthrodesis infection, one chronic periprosthetic joint infection (PJI), one cardiovascular implantable electronic device (CIED) infection and four patients with left ventricular assist device (LVAD) infection. The isolated pathogens were multi-drug-resistant Pseudomonas aeruginosa (n=3), methicillin-sensitive Staphylococcus aureus (n=4),
Aim. Prosthetic joint infections (PJI) remain a great challenge in orthopedic surgery with a high mortality rate. It is particularly complicated by biofilms and infections caused by
Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. Method. Different BAG-S53P4 formulations were used for this study, including (a) BAG-powder (<45 μm), (b) BAG-granules (500–800 μm), (c) a cone-shaped BAG-scaffold and (d) two kinds of BAG-putty containing granules, with no powder (putty-A) or with additional powder (putty-B), and a synthetic binder. Inert glass beads were included as control. All formulations were tested in a concentration of 1750 g/ml in Müller-Hinton-Broth. Targeted bacteria included
Aims. Prosthetic joint infection (PJI) remains the most severe complication of arthroplasty. Failure of intensive, long-term antibiotic treatment for PJI often requires removal of the implant. Antibiotic failure is thought to be caused by biofilm and persister formation. Novel anti-biofilm and anti-persister strategies are urgently needed. Here, we investigated the effects of several antimicrobial peptides on the bacteria within antibiotic-treated biofilms in an in vitro mature biofilm model on abiotic surfaces. Methods. On polystyrene, a mature (7 day-old)
Aim. To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to
Background. Vancomycin and fosfomycin are antibiotic commonly used in
Aim. The increasing incidence of orthopaedic
Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as
Aim. This study aims to describe our department experience with single stage revision (SSR) for chronic prosthetic-joint infection (PJI) after total hip arthroplasty (THA) between 2005 and 2014 and to analyze success rates and morbidity results of patients submitted to SSR for infected THA according to pathogen. Method. We retrospectively reviewed our 10 years of results (2005–2014) of patients submitted to SSR of the hip combined with IV and oral antibiotic therapy for treatment of chronic PJI (at least 4 weeks of symptoms), with a minimum follow-up of four years (n=26). Patients were characterized for demographic data, comorbidities, identified germ and antibiotic therapy applied (empiric and/or targeted). Outcomes analyzed were re-intervention rate (infection-related or aseptic), success rate (clinical and laboratory assessment), length of stay, morbidity and mortality outcomes. Results. In this period, 26 single-stage revisions for chronic PJI of the hip were performed. Patients average age was 72 years (range 44–82). Ten patients were women. The average time of follow up was 69 months (range 4 to 12 years). The most commonly isolated bacteria were coagulase-negative Staphylococci (30%),
Aim. We aimed to compare the in vitro antibacterial activity of Bioactive Glass (BAG) S53P4, which is a compound showing local antibacterial activity, to that of antibiotic-loaded polymethylmethacrylate (PMMA) against multidrug resistant bacteria from osteomyelitis (OM) and prosthetic joint infection (PJI) isolates. Method. We studied convenience samples of multidrug resistant (MDR) microorganisms obtained from patients presenting OM and prosthetic joint infection (PJI). Mixtures containing tryptic soy broth (TSB) and inert glass beads (2mm), BAG-S53P4 granules (0.5–0.8mm and <45 mm) and Gentamicin or Vancomycin-loaded PMMA beads were inoculated with
Aim. The aim of this systematic review was to determine all cultured bacteria, antibiotic strategies, and their outcome from literature describing treatment of FRI patients between 1990 and 2018. Methods. A systematic literature search was performed on treatment and outcome of FRI. All studies in English that described surgical patient series for treatment of FRI were included, using Medline, Embase, Web of Science, Cochrane, and Google Scholar. Publications before 1990 and studies that did not describe FRI patient treatment or did not report original data (e.g., reviews or meta-analyses) were excluded. Study selection and data collection were done by two authors independently. Main collected parameters were preoperative cultures, use of local antibiotics, postoperative antibiotic protocol, cultured microorganisms, and overall outcome of treatment, i.e., eradication of infection and bony union, recurrence, amputations, revisional surgery, and number of complications. Dichotomous data were pooled using Medcalc, and weighted means were calculated for continuous data using Excel. Results. 2,171 studies were identified. Of these, 110 studies were included, describing 119 patient series, in which 4561 patients (4614 fractures) were treated. The population was predominantly male (76%), and the main location of FRI was the tibia (69%). In 78 (71%) studies, 3,234 microorganisms were cultured, of which Methicillin-sensitive Staphylococcus aureus (MSSA) was found in 1,094 (34%) patients, followed by Coagulase-negative Staphylococci (CNS), 431 (13%),
Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a
Aim. Dexamethasone is often used as part of multimodal analgesia to prevent postoperative nausea and vomiting (PONV) and also to reduce postoperative pain. Because glucocorticoids have immunosuppressive and glucose-rising effects, the aim of current study was to examine if dexamethasone may be used safely in arthroplasty surgery. Methods. All consecutive total primary and revision hip and knee arthroplasties performed in the Hospital District of Helsinki and Uusimaa, Peijas Hospital were analyzed (n=18 872). Emergency operations, for example total hip arthroplasties for femur fractures, were also included. Prospective surveillance for postoperative infections was performed. All infections meeting the Musculoskeletal Infection Society definition for prosthetic joint infection (PJI) were included. Results. A total of 189 (1.0%) PJIs occurred: 0.8% after all primary arthroplasties and 1.9% after revision arthroplasties. The PJI rate after the emergency operations was 2.3 % (19/796). The PJI rate in the dexamethasone group was 1.0% (30/2 922) and in the non-dexamethasone group 1.0% (159/15 950), with no significant difference in the PJI incidence (P=0.849). The median time from the index operation to the infection was 16.0 (Q1–Q3 13.0–23.0) days. Total of 35 causative bacteria were cultured from the 30 PJI in dexamethasone group and 169 bacteria from the 159 PJI in non-dexamethasone group with no significant difference: Staphylococcus aureus (40.0% and 45.0%, respectively, P=1.000), Staphylococcus epidermidis (14.3% and 10.7%, P=0.375), other coagulase-negative staphylococci (11.4% and 11.8%, P=0.200), Streptococcus agalactiae (11.4% and 11.8%, P=0.695), Streptococcus betahemolyticus G (8.6% and 2.4%, P=0.081), other streptococci (0.0% and 4.1%, P=0.599), Enterococcus faecalis (2.9% and 5.3%, P=1.000), Enterobacter cloacae (2.9% and 3.6%, P=1.000), Pseudomonas aeruginosa (2.9% and 1.8%, P=0.502), and other bacteria (14.3% and 8.8%, P=0.544). Only one
Introduction. We report our mid-term results and risk factors of a two-stage revision using impaction bone grafting for an infected hip replacement. Methods. A two-stage revision using impacted cancellous allografs and cement was performed in 13 patients (7 total hip replacements, 6 femoral head replacements) with confirmed infection. The mean age of the patients at first stage operation was 63 years (range, 45–84 years). In the first stage, local antibiotics were added to customized cement beads and/or a cement spacer after removal of all components and radical debridement. In the second stage, impaction grafting was done using the X-change system (Exeter). Results. Of the patients, 8 underwent multiple operations to obtain evidence that infection had been overcome in the first stage, and of them, 6 had infection due to