Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 807 - 811
1 Jun 2006
Roche SJ Fitzgerald D O’Rourke A McCabe JP

This prospective five-year study analyses the impact of methicillin-resistant Staphylococcus aureus (MRSA) on an Irish orthopaedic unit. We identified 318 cases of MRSA, representing 0.76% of all admissions (41 971). A total of 240 (76%) cases were colonised with MRSA, while 120 (37.7%) were infected. Patients were admitted from home (218; 68.6%), nursing homes (72; 22.6%) and other hospitals (28; 8.8%). A total of 115 cases (36.6%) were colonised or infected on admission. Many patients were both colonised and infected at some stage. The length of hospital stay was almost trebled because of the presence of MRSA infection. Encouragingly, overall infection rates have not risen significantly over the five years of the study despite increased prevalence of MRSA. However, the financial burden of MRSA is increasing, highlighting the need for progress in understanding how to control this resistant pathogen more effectively


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 548 - 551
1 Apr 2011
Murphy E Spencer SJ Young D Jones B Blyth MJG

The objective of this study was to determine the effectiveness of screening and successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) colonisation in elective orthopaedic patients on the subsequent risk of developing a surgical site infection (SSI) with MRSA. We screened 5933 elective orthopaedic in-patients for MRSA at pre-operative assessment. Of these, 108 (1.8%) were colonised with MRSA and 90 subsequently underwent surgery. Despite effective eradication therapy, six of these (6.7%) had an SSI within one year of surgery. Among these infections, deep sepsis occurred in four cases (4.4%) and superficial infection in two (2.2%). The responsible organism in four of the six cases was MRSA. Further analysis showed that patients undergoing surgery for joint replacement of the lower limb were at significantly increased risk of an SSI if previously colonised with MRSA. We conclude that previously MRSA-colonised patients undergoing elective surgery are at an increased risk of an SSI compared with other elective patients, and that this risk is significant for those undergoing joint replacement of the lower limb. Furthermore, when an infection occurs, it is likely to be due to MRSA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 18 - 18
10 Feb 2023
Foster A Boot W Stenger V D'Este M Jaiprakash A Crawford R Schuetz M Eglin D Zeiter S Richards R Moriarty T
Full Access

Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in. sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with systemic antibiotic therapy. In vivo observations included: local antibiotic tissue concentration, renal and liver function tests, and quantitative microbiology on tissues and hardware post-mortem. There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits. This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 812 - 817
1 Jun 2006
Nixon M Jackson B Varghese P Jenkins D Taylor G

We examined the rates of infection and colonisation by methicillin-resistant Staphylococcus aureus (MRSA) between January 2003 and May 2004 in order to assess the impact of the introduction of an MRSA policy in October 2003, which required all admissions to be screened. Emergency admissions were treated prophylactically and elective beds ring-fenced. A total of 5594 admissions were cross-referenced with 22 810 microbiology results. The morbidity, mortality and cost of managing MRSA-carrying patients, with a proximal fracture of the femur were compared, in relation to age, gender, American Society of Anaesthesiologists grade and residential status, with a group of matched controls who were MRSA-negative. In 2004, we screened 1795 of 1796 elective admissions and MRSA was found in 23 (1.3%). We also screened 1122 of 1447 trauma admissions and 43 (3.8%) were carrying MRSA. All ten ward transfers were screened and four (40%) were carriers (all p < 0.001). The incidence of MRSA in trauma patients increased by 2.6% per week of inpatient stay (r = 0.97, p < 0.001). MRSA developed in 2.9% of trauma and 0.2% of elective patients during that admission (p < 0.001). The implementation of the MRSA policy reduced the incidence of MRSA infection by 56% in trauma patients (1.57% in 2003 (17 of 1084) to 0.69% in 2004 (10 of 1447), p = 0.035). Infection with MRSA in elective patients was reduced by 70% (0.56% in 2003 (7 of 1257) to 0.17% in 2004 (3 of 1806), p = 0.06). The cost of preventing one MRSA infection was £3200. Although colonisation by MRSA did not affect the mortality rate, infection by MRSA more than doubled it. Patients with proximal fractures of the femur infected with MRSA remained in hospital for 50 extra days, had 19 more days of vancomycin treatment and 26 more days of vacuum-assisted closure therapy than the matched controls. These additional costs equated to £13 972 per patient. From this experience we have been able to describe the epidemiology of MRSA, assess the impact of infection-control measures on MRSA infection rates and determine the morbidity, mortality and economic cost of MRSA carriage on trauma and elective orthopaedic wards


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 27 - 27
24 Nov 2023
Chen B Chittò M Benavente LP Post V Moreno MG Zeiter S Trampuz A Wagemans J Lavigne R Onsea J Metsemakers W Moriarty F
Full Access

Aim. Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA. Method. Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (10. 7. PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice. Results. In vitro: The cocktail of evolved phages (10. 7. PFU/ml, 1:1) combined with 0.5 MIC vancomycin achieved 99.72% reduction in MRSA3 biofilm in vitro compared to the growth control. This combination was stable in the co-delivery hydrogel over 8 days. The release profile showed that 57% of phages and 80% of vancomycin were released after 72hrs, which was identical to the performance for gels loaded with phage or antibiotic alone. In the in vivo study, the bacterial load from animals that received co-delivery hydrogel and systemic vancomycin was significantly reduced compared to controls, animals that received systemic vancomycin and animals that received co-delivery hydrogel alone (p<0.05). Conclusions. Our study demonstrates the potential of using evolved phages in combination with vancomycin and hydrogel delivery systems for the treatment of MRSA-related infections. Further research in this area may lead to the development of specific therapies for biofilm-related infection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 26 - 26
24 Nov 2023
Morovic P Benavente LP Karbysheva S Perka C Trampuz A
Full Access

Aim. Antibiotics have limited activity in the treatment of multidrug-resistant or chronic biofilm-associated infections, in particular when implants cannot be removed. Lytic bacteriophages can rapidly and selectively kill bacteria, and can be combined with antibiotics. However, clinical experience in patients with surgical infections is limited. We investigated the outcome and safety of local application of bacteriophages in addition to antimicrobial therapy. Method. 8 patients (2 female and 6 male) with complex orthopedic and cardiovascular infections were included, in whom standard treatment was not feasible or impossible. The treatment was performed in agreement with the Article 37 of the Declaration of Helsinki. Commercial or individually prepared bacteriophages were provided by ELIAVA Institute in Tbilisi, Georgia. Bacteriophages were applied during surgery and continued through drains placed during surgery three times per day for the following 5–14 days. Follow-up ranged from 1 to 28 months. Results. Median age was 57 years, range 33–75 years. Two patients were diagnosed with a persistent knee arthrodesis infection, one chronic periprosthetic joint infection (PJI), one cardiovascular implantable electronic device (CIED) infection and four patients with left ventricular assist device (LVAD) infection. The isolated pathogens were multi-drug-resistant Pseudomonas aeruginosa (n=3), methicillin-sensitive Staphylococcus aureus (n=4), methicillin-resistant Staphylococcus aureus (MRSA) (n=1) and methicillin-resistant Staphylococcus epidermidis (MRSE) (n=1). 4 infections were polymicrobial. 5 patients underwent surgical debridement with retention of the implant, 1 patient with PJI underwent the exchange of the prosthesis and one patient with LVAD infection was treated conservatively. All patients received intravenous and oral antibiotic therapy and local application of bacteriophages. At follow-up of 12 month, 5 patients were without signs or symptoms of infection, whereas in one patient with LVAD infection, a relapse was observed with emergence of phage-resistant Pseudomonas aeruginosa. In this patient, no surgical revision was performed. Conclusions. Bacteriophage therapy may represent a valid additional approach, when standard antimicrobial and surgical treatment is not possible or feasible, including in difficult-to-treat infections. In our case series, 5 of 6 patients were infection free after 1 year. Further studies need to address the optimal bacteriophage administration route, concentration, duration of treatment and combination with antimicrobials


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 52 - 52
1 Oct 2022
Müller N Trampuz A Gonzalez-Moreno M
Full Access

Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. Method. Different BAG-S53P4 formulations were used for this study, including (a) BAG-powder (<45 μm), (b) BAG-granules (500–800 μm), (c) a cone-shaped BAG-scaffold and (d) two kinds of BAG-putty containing granules, with no powder (putty-A) or with additional powder (putty-B), and a synthetic binder. Inert glass beads were included as control. All formulations were tested in a concentration of 1750 g/ml in Müller-Hinton-Broth. Targeted bacteria included methicillin-resistant Staphylococcus aureus (MRSA) and epidermidis (MRSE). Vancomycin was tested at the minimum-inhibitory-concentration for each strain (1 µg/ml for MRSA; 2 μg/ml for MRSE). To investigate the antibiofilm effect of BAG alone or combined with vancomycin, 3 hour-old MRSA or MRSE biofilms were formed on porous glass beads and exposed to BAG ± vancomycin for 24h, 72h and 168h. After co-incubation, biofilm-beads were deep-washed in phosphate-buffered saline and placed in glass vials containing fresh medium. Recovering biofilm bacteria were detected by measuring growth-related heat production at 37°C for 24h by isothermal microcalorimetry. Changes in pH and osmotic pressure over time were assessed after co-incubation of each BAG formulation in Müller-Hinton-Broth for 0h, 24h, 72h and 168h. Results. All BAG formulations showed antibiofilm activity against MRSA and MRSE in a time-dependent manner, where longer incubation times revealed higher antibiofilm activity. BAG-powder and BAG-putty-B were the most effective formulations suppressing biofilm, followed by BAG-granules, BAG-scaffold and finally BAG-putty-A. The addition of vancomycin had no substantial impact on biofilm suppression. An increase in pH and osmotic pressure over time could be observed for all BAG formulations. BAG-powder reached the highest pH value of 12.5, whereas BAG-putty-A resulted in the lowest pH of 9. Both BAG-putty formulations displayed the greatest increase on osmotic pressure. Conclusions. BAG-S53P4 has demonstrated efficient biofilm suppression against MRSA and MRSE, especially in powder-containing formulations. Our data indicates no additional antibiofilm improvement with addition of vancomycin. Moreover, high pH appears to have a larger antimicrobial impact than high osmolarity. Acknowledgements. This work was supported by PRO-IMPLANT Foundation (Berlin, Germany). The tested materials were provided by Bonalive Biomaterials Ltd (Turku, Finland)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 91 - 91
1 Dec 2019
Scheper H Verhagen J de Visser A van der Wal R Wubbolts J Visser LG Boer MGJD Nibbering PH
Full Access

Aims. Prosthetic joint infection (PJI) remains the most severe complication of arthroplasty. Failure of intensive, long-term antibiotic treatment for PJI often requires removal of the implant. Antibiotic failure is thought to be caused by biofilm and persister formation. Novel anti-biofilm and anti-persister strategies are urgently needed. Here, we investigated the effects of several antimicrobial peptides on the bacteria within antibiotic-treated biofilms in an in vitro mature biofilm model on abiotic surfaces. Methods. On polystyrene, a mature (7 day-old) methicillin-resistant Staphylococcus aureus (MRSA) biofilm was developed. Thereafter, bacteria in the biofilm were exposed to rifampicin and ciprofloxacin (both 10× >MIC) for three days. Surviving bacteria in the antibiotic-treated biofilm, presumed to include persisters, were exposed to increasing doses of the antimicrobial peptides SAAP-148, acyldepsipeptide 4 (ADEP4), LL-37 and pexiganan. SAAP-148 was further tested on antibiotic-treated mature biofilms on titanium/aluminium/niobium (TAN) discs and prosthetic joint liners. Results. Daily exposure of the mature biofilm for seven days with antibiotics resulted in a 4-log reduction of MRSA without elimination of the bacteria. The surviving bacteria within the biofilm were eliminated upon subsequent exposure to SAAP-148 and pexiganan but not with LL-37 ad ADEP4. Antibiotic treatment of mature biofilms on TAN discs followed by SAAP-148 also resulted in eradication of bacteria within the biofilm. SAAP-148 also fully eliminated bacteria within antibiotic-treated mature MRSA biofilms on an ex vivo liner of a prosthetic joint. Conclusions. A novel mature biofilm model has been developed in which the efficacy of antimicrobial peptides against bacteria, including persisters, residing within a biofilm was investigated. SAAP-148 and pexiganan were highly effective against the bacteria residing in antibiotic-exposed mature MRSA biofilms. This in vitro model system will be used to analyze the effects of novel antibiotic strategies and other anti-PJI agents


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 88 - 88
1 Dec 2019
Luca MD Materazzi A Klatt A Bottai D Tavanti A Trampuz A
Full Access

Aim. To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to methicillin-resistant Staphylococcus aureus (MRSA) in Galleria mellonella larvae implanted with a K-wire. Method. The stability of Sb-1 in G. mellonella larvae was investigated by injecting a phage titer of 10. 8. PFU and evaluating the presence of Sb-1 in hemolymph at different time points. For infection experiments, sterile stainless-steel K-wires (4 mm, 0.6 mm Ø) were implanted into larvae. Two days after implant, larvae were infected with MRSA ATCC 43300 (1×10. 5. CFU) and incubated at 37°C for further 2 days. Implanted-infected larvae were thus treated for 2 days (3×/day) with 10µL of: i) PBS; ii) Sb-1 (10. 7. PFU); iii) Daptomycin (4mg/kg), iv) PBS (24h)/Daptomycin(24h); v) Sb-1(24h)/Daptomycin(24h). To evaluate the prophylactic efficacy of Sb-1, an experiment based on phages or vancomycin (10mg/kg) administration, followed by MRSA infection of implanted larvae was performed. Both two days post-infection and post-treatment, K-wires were explanted, and the material was sonicated and plated for MRSA colony counting. Results. Sb-1 titer resulted stable in hemolymph of G. mellonella larvae for 6–8 h post-administration. Two days post-infection of K-wire implanted larvae, ≈5×10. 7. CFU/ml MRSA were found on the material. K-wires from larvae treated with Sb-1 or Daptomycin showed a MRSA CFU/ml reduction of ≈1 log compared to the CFU/ml values of the untreated control. The staggered administration Sb-1/Daptomycin determined higher CFU reduction (≈ 3.5 log). Prophylaxis with Sb-1 prevented MRSA infection of 7out of 10 larvae similarly to vancomycin. Conclusions. G. mellonella larvae implanted with K-wires are a suitable model to test antibiofilm formulations in vivo. Sb-1 phage is able to prevent implant-associated infection due to MRSA in larvae. Sequential combination of Sb-1 and Daptomycin strongly reduces the MRSA load on implanted K-wires


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 146 - 146
1 May 2016
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B
Full Access

Background. Vancomycin and fosfomycin are antibiotic commonly used in Methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the efficacy of articulating cement spacer implegnated with vancomycin and articulating cement spacer implegnated with fosfomycin to inhibit MRSA. Methods. Vancomycin implegnated articulating cement spacers and Fosfomycin implegnated articulating cement spacers were immersed in sterile phosphate buffered saline(PBS) and then incubated at 37 C. The samples were collected and change daily. Aliquots were tested for MRSA inhibition by disc diffusion method. The inhibition zones diameters were measured. Results. Vancomycin group showed an MRSA inhibition zone up to four weeks. However, Fosfomycin group showed inhibition zone in day 3 in some samples but after that no sample had the potential to inhibit MRSA. Conclusion. In this experiment. Vancomycin impregnated articulating cement spacers showed longer efficacy to inhibit MRSA when compared to Fosfomycin


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 45 - 45
1 Dec 2018
Bue M Hanberg P Koch J Jensen LK Lundorff M Aalbæk B Jensen HE Søballe K Tøttrup M
Full Access

Aim. The increasing incidence of orthopaedic methicillin-resistant Staphylococcus aureus (MRSA) infections represents a significant therapeutic challenge. Being effective against MRSA, the role of vancomycin may become more important in the orthopaedic setting in the years to come. Nonetheless, vancomycin bone and soft tissue penetration during infection remains unclear. We assessed the effect of a traumatically induced, implant-associated acute osteomyelitis on vancomycin bone penetration in a porcine model. Method. In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Staphylococcus aureus strain. Following administration of 1,000 mg of vancomycin on day 5, vancomycin concentrations were obtained with microdialysis for eight hours in the implant bone cavity, in cancellous bone adjacent to the implant cavity, in subcutaneous adipose tissue (SCT) adjacent to the implant cavity, and in healthy cancellous bone and healthy SCT in the contralateral leg. Venous blood samples were also obtained. The extent of infection and inflammation was evaluated by post-mortem computed tomography scans, C-reactive protein serum levels and cultures of blood and swabs. Results. In relation to all the implant cavities, bone destruction was found. Ranging from 0.20 to 0.74, tissue penetration, expressed as the ratio of tissue to plasma area under the concentration-time curve from 0 to the last measured value, was incomplete for all compartments except for healthy SCT. The lowest penetration was found in the implant cavity. Conclusions. Staphylococcus aureus implant-associated osteomyelitis was found to reduce vancomycin bone penetration, especially in the implant cavity. These findings suggest that it may be unsafe to rely solely on vancomycin therapy when treating acute osteomyelitis. Particularly when metaphyseal cavities are present, surgical debridement seems necessary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 75 - 75
1 Dec 2019
Boot W Foster A Schmid T D'este M Zeiter S Eglin D Richards G Moriarty F
Full Access

Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large animal model of a two-stage revision to treat MRSA implant-associated osteomyelitis has been developed to assess novel treatments. A bioresorbable, thermo-responsive hyaluronan hydrogel (THH) loaded with antibiotics has been developed and our aim was to investigate it´s in vivo efficacy as a local antibiotic carrier compared to the current standard of care i.e. antibiotic-loaded polymethylmethacrylate (PMMA) bone cement. Method. 12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical systemic therapy to group 1. Sheep were euthanized 2 weeks following completion of antibiotic therapy. At euthanasia, soft tissue, bone, and sonicate fluid from the hardware was collected for quantitative bacteriology. Results. Sheep tolerated the surgeries and both local and systemic antibiotics well. Gold standard of care successfully treated 3/6 sheep with a total of 10/30 culture-positive samples. All 6 sheep receiving antibiotic-loaded THH were successfully treated with 0/30 culture-positive samples, p=0.0008 gold-standard vs. hydrogel (Fisher's Exact). Conclusions. The clinical gold standard treatment was successful in 50% of sheep, consistent with outcomes reported in the literature treating MRSA infection. The antibiotic-loaded THH clearly outperformed the gold standard in this model. Superior efficacy of the THH is likely due to 1) the ability to administer local antibiotics at the both revision surgies due to the bioresorbable nature of the hydrogel, and 2) complete antibiotic release compared to bone cement, which is known to retain antibiotics. Our results highlight the potential of local delivered, biodegradable systems for antibiotics for eradicating implant-related infection caused by antibiotic-resistant pathogens. Acknowledgement. Funding provided by AO Trauma


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 48 - 48
1 Dec 2019
Afonso R Baptista MX Costa MRD Sá-Barros C Santos BD Varanda P Tinoco JB Rodrigues EB
Full Access

Aim. This study aims to describe our department experience with single stage revision (SSR) for chronic prosthetic-joint infection (PJI) after total hip arthroplasty (THA) between 2005 and 2014 and to analyze success rates and morbidity results of patients submitted to SSR for infected THA according to pathogen. Method. We retrospectively reviewed our 10 years of results (2005–2014) of patients submitted to SSR of the hip combined with IV and oral antibiotic therapy for treatment of chronic PJI (at least 4 weeks of symptoms), with a minimum follow-up of four years (n=26). Patients were characterized for demographic data, comorbidities, identified germ and antibiotic therapy applied (empiric and/or targeted). Outcomes analyzed were re-intervention rate (infection-related or aseptic), success rate (clinical and laboratory assessment), length of stay, morbidity and mortality outcomes. Results. In this period, 26 single-stage revisions for chronic PJI of the hip were performed. Patients average age was 72 years (range 44–82). Ten patients were women. The average time of follow up was 69 months (range 4 to 12 years). The most commonly isolated bacteria were coagulase-negative Staphylococci (30%), methicillin-resistant Staphylococcus aureus (MRSA) (18%) and methicillin-sensitive Staphylococcus aureus (15%). It wasn't possible to identify the germ in 19% of the patients and other 23% were polymicrobial. Targeted antibiotic therapy was administered to 73% of patients and the most used targeted antibiotics were Vancomycin (53%), Linezolid (32%) and Rifampicin (21%). Mean length of stay was 25 days. In the follow-up period, 9 patients (35%) required a re-intervention for infection relapse. Two patients (8%) needed surgery because of persistent instability. During the follow-up period, the infection-free survival was 65% (33% for MRSA; 82% for coagulase-negative Staphylococci) and the surgery-free survival was 62%. Six patients (23%) died during the follow-up, all due to other medical conditions not related to hip infection. Conclusions. Our experience suggests that SSR is associated with good outcomes and low re-intervention rate, except in the case of infection due to MRSA. In this last group, the results were significantly poorer, what leads to suggest that a two-stage revision may be a better option. The potential advantages of a SSR include good rates of infection eradication, a decrease in surgical morbidity and mortality as well as a decrease in healthcare and global economic costs. As such, a one-stage aggressive surgical attitude in addition to targeted antibiotherapy seems to be a suitable solution in selected patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 48 - 48
1 Dec 2018
Cunha M Murça MA Nigro S Klautau G Salles M
Full Access

Aim. We aimed to compare the in vitro antibacterial activity of Bioactive Glass (BAG) S53P4, which is a compound showing local antibacterial activity, to that of antibiotic-loaded polymethylmethacrylate (PMMA) against multidrug resistant bacteria from osteomyelitis (OM) and prosthetic joint infection (PJI) isolates. Method. We studied convenience samples of multidrug resistant (MDR) microorganisms obtained from patients presenting OM and prosthetic joint infection (PJI). Mixtures containing tryptic soy broth (TSB) and inert glass beads (2mm), BAG-S53P4 granules (0.5–0.8mm and <45 mm) and Gentamicin or Vancomycin-loaded PMMA beads were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MR-CoNS), Pseudomonas aeruginosa or Klebsiella pneumoniae isolates. Glass beads (2.0mm) were used as a control. Antibacterial activity was evaluated by means of time-kill curve, through seeding the strains on blood agar plates, and subsequently performing colony counts after 24, 48, 72, 96, 120 and 168 hours of incubation. Differences between groups were evaluated by means of two-way analysis of variance (ANOVA) and Bonferroni's t test. Results. Inhibition of bacterial growth started soon after 48 hours of incubation, reached zero CFU/ml between 120 and 168 hours of incubation for both antibiotic-loaded PMMA and BAG S53P4 groups, in comparison with inert glass (p< 0.05). No difference regarding time-kill curves between antibiotic-loaded PMMA and BAG S53P4 was observed. Moreover, despite no difference was observed between both Vancomycin - or Gentamicin-loaded PMMA and BAG groups, there was statistical difference between the effectiveness of all treatments (BAG included) against gram-positive cocci and gram-negative bacilli, the latter of which requiring longer time frames for the cultures to yield no bacterial growth. Conclusions. BAG S53P4 presented antibacterial properties as much as antibiotic-loaded PMMA for MDR bacteria producing OM and PJI, although presenting differences between its effectiveness against different bacterial groups


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 57 - 57
1 Dec 2019
Bezstarosti H van Lieshout E Voskamp L Croughs P Kortram K McNally M Metsemakers W Verhofstad M
Full Access

Aim. The aim of this systematic review was to determine all cultured bacteria, antibiotic strategies, and their outcome from literature describing treatment of FRI patients between 1990 and 2018. Methods. A systematic literature search was performed on treatment and outcome of FRI. All studies in English that described surgical patient series for treatment of FRI were included, using Medline, Embase, Web of Science, Cochrane, and Google Scholar. Publications before 1990 and studies that did not describe FRI patient treatment or did not report original data (e.g., reviews or meta-analyses) were excluded. Study selection and data collection were done by two authors independently. Main collected parameters were preoperative cultures, use of local antibiotics, postoperative antibiotic protocol, cultured microorganisms, and overall outcome of treatment, i.e., eradication of infection and bony union, recurrence, amputations, revisional surgery, and number of complications. Dichotomous data were pooled using Medcalc, and weighted means were calculated for continuous data using Excel. Results. 2,171 studies were identified. Of these, 110 studies were included, describing 119 patient series, in which 4561 patients (4614 fractures) were treated. The population was predominantly male (76%), and the main location of FRI was the tibia (69%). In 78 (71%) studies, 3,234 microorganisms were cultured, of which Methicillin-sensitive Staphylococcus aureus (MSSA) was found in 1,094 (34%) patients, followed by Coagulase-negative Staphylococci (CNS), 431 (13%), Methicillin-resistant Staphylococcus aureus (MRSA), 283 (9%), and Pseudomonas aeruginosa 276 (9%). Polymicrobial infections were present in 11% of patients. Local antibiotics were used in 63 (53%) patient series, with PMMA being the most frequent carrier (73%). Calcium-based cements were used in nine series (14%). Clear postoperative antibiotic protocols were described in only 39 (35%) studies and differed widely. Bony union and infection eradication were achieved in 92% (CI 90–94) of all patients. Recurrence was seen in 9% (CI 8–11), and amputation was required in 3% (CI 3–4) of patients. The effect of local antibiotics on overall outcome of FRI treatment was unclear. Conclusions. This systematic literature review clearly shows that standardized antibiotic treatment protocols for FRI patients are lacking and that internationally accepted guidelines are required. The data also confirm that S. aureus is the most common microorganism encountered in FRI. Due to the large heterogeneity of used local antibiotics and carriers, a reliable comparison was not feasible. Indications for the use of local antibiotics are unclear, and future prospective studies seem necessary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2019
Butini ME Abbandonato G Rienzo CD Trampuz A Luca MD
Full Access

Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a methicillin-resistant Staphylococcus aureus (MRSA) biofilm after treatment with high concentrations of vancomycin (VAN) and their ability to revert to a normal-growing phenotype during incubation in fresh medium without antibiotic. Moreover, the ability of daptomycin to eradicate the infection by killing persisters was also investigated. Method. A 24h-old MRSA ATCC 43300 biofilm was exposed to 1024 µg/ml VAN for 24h. Metabolism-related heat of biofilm-embedded cells, either during or after VAN-treatment, was monitored in real-time by IMC for 24 or 48h, respectively. To evaluate the presence of VAN-derived “persisters” after antibiotic treatment, beads were sonicated and detached free-floating bacteria were further challenged with 100xMIC VAN (100 µg/ml) in PBS+1% Cation Adjusted Mueller Hinton Broth (CAMHB).. Suspensions were plated for colony counting. The resumption of persister cells' normal growth was analysed by IMC on dislodged trated cells for 15h in CAMHB. Activity of 16 µg/ml daptomycin was assessed against persister cells by colony counting. Results. When incubated with 1024 µg/ml VAN, MRSA biofilm produced undetectable heat, suggesting a strong reduction of cell viability and/or cellular metabolism. However, the same samples re-inoculated in fresh medium produced a detectable and delayed metabolism-related heat signal, similarly to that generated by persister cells. The following exposure to 100xMIC VAN resulted in neither complete killing nor bacterial growth, strongly supporting the hypothesis of a persistent phenotype. IMC analysis indicated that VAN-treated biofilm cells resumed normal growth with a ∼3h-delay, as compared to the untreated growth control. Daptomycin treatment yielded a complete eradication of persister cells selected after VAN treatment. Conclusions. Hostile environmental conditions (e.g. high antibiotic bactericidal concentrations) select for persister cells in MRSA biofilm after 24h-treatment in vitro. A staggered treatment vancomycin/daptomycin allows complete biofilm eradication. These results support the use in clinical practice of a therapeutic regimen based on the combined use of antibiotics to kill persisters and eradicate MRSA biofilms. IMC represents a suitable technique to detect persisters and characterize in real-time their reversion to a metabolically-active phenotype


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 8 - 8
1 Dec 2018
Vuorinen M Palanne R Mäkinen T Leskinen J Huotari K
Full Access

Aim. Dexamethasone is often used as part of multimodal analgesia to prevent postoperative nausea and vomiting (PONV) and also to reduce postoperative pain. Because glucocorticoids have immunosuppressive and glucose-rising effects, the aim of current study was to examine if dexamethasone may be used safely in arthroplasty surgery. Methods. All consecutive total primary and revision hip and knee arthroplasties performed in the Hospital District of Helsinki and Uusimaa, Peijas Hospital were analyzed (n=18 872). Emergency operations, for example total hip arthroplasties for femur fractures, were also included. Prospective surveillance for postoperative infections was performed. All infections meeting the Musculoskeletal Infection Society definition for prosthetic joint infection (PJI) were included. Results. A total of 189 (1.0%) PJIs occurred: 0.8% after all primary arthroplasties and 1.9% after revision arthroplasties. The PJI rate after the emergency operations was 2.3 % (19/796). The PJI rate in the dexamethasone group was 1.0% (30/2 922) and in the non-dexamethasone group 1.0% (159/15 950), with no significant difference in the PJI incidence (P=0.849). The median time from the index operation to the infection was 16.0 (Q1–Q3 13.0–23.0) days. Total of 35 causative bacteria were cultured from the 30 PJI in dexamethasone group and 169 bacteria from the 159 PJI in non-dexamethasone group with no significant difference: Staphylococcus aureus (40.0% and 45.0%, respectively, P=1.000), Staphylococcus epidermidis (14.3% and 10.7%, P=0.375), other coagulase-negative staphylococci (11.4% and 11.8%, P=0.200), Streptococcus agalactiae (11.4% and 11.8%, P=0.695), Streptococcus betahemolyticus G (8.6% and 2.4%, P=0.081), other streptococci (0.0% and 4.1%, P=0.599), Enterococcus faecalis (2.9% and 5.3%, P=1.000), Enterobacter cloacae (2.9% and 3.6%, P=1.000), Pseudomonas aeruginosa (2.9% and 1.8%, P=0.502), and other bacteria (14.3% and 8.8%, P=0.544). Only one methicillin-resistant Staphylococcus aureus (MRSA) was detected in dexamethasone group. The proportion of polymicrobial PJIs was similar in both groups: 13.3% and 8.8%, respectively (p=0.495). Conclusions. In our study material, the use of 5–10mg dose of dexamethasone did not increase the incidence of postoperative PJI. The single 5–10 dose of dexamethasone may be safely used to prevent PONV and as part of multimodal analgesia on patients undergoing arthroplasty operation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 8 - 8
1 Dec 2017
Tkhilaishvili T Di Luca M Trampuz A Gaudias J
Full Access

Aim. The increase of antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriophages present a promising alternative to treat biofilm-related infections due to their rapid bactericidal activity and activity on multi-drug resistant bacteria. In this study, we investigated the synergistic activity of lytic bacteriophage Sb-1 with different antibiotics against MRSA biofilm, using a real-time highly sensitive assay measuring growth-related heat production (microcalorimetry). Methods. Rifampin, fosfomycin, vancomycin and daptomycin were tested alone and in combination with S. aureus specific phage, Sb-1, against MRSA (Staphylococcus aureus*). MRSA biofilm was formed on porous glass beads (Φ 4 mm, pore size 60 µm) and incubated for 24 h at 37° C in BHI. After 3 times washing biofilms were exposed first to different titers of bacteriophages, ranging from 102 to104 plaque-forming unite (pfu)/ml and after 24h treated again with subinhibitory concentration of antibiotics (corresponding to 1/4, 1/8, 1/16, 1/32 × MHICbiofilm). After 24h antibiotic treatment, the presence of biofilm on glass beads was evaluated by isothermal microcalorimetry for 48h. Heat flow (µW) and total heat (J) were measured. Results. MHICs of rifampin, fosfomycin, daptomycin and vancomycin when tested alone were 256 μg/ml, >4096 μg/ml, 128μg/ml and 2048μg/ml, respectively. Synergistic activity against biofilm MRSA was observed when vancomycin was tested at subinhibitory concentrations 512 μg/ml, 256 μg/ml, 128 μg/ml and 64 μg/ml in combination with subinhibitory titers of Sb-1 at 102, 103, 104 pfu/ml. Complete inhibition of heat production was observed only in combination with a higher titer of Sb-1 (104 pfu/ml). High synergistic activities were also observed in the presence of rifampin, fosfomycin and daptomycin. Conclusions. While MHICs of antibiotics against MRSA biofilm were above drug concentrations reachable in clinical practice, the co-administration with bacteriophage Sb-1 strongly reduced the antibiotic doses needed to eradicate MRSA biofilm. The use of bacteriophage and antibiotics in combination represent an effective strategy to treat implant-associated infections


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 20 - 20
1 Dec 2016
Ezzat A Lovejoy J Alexander K
Full Access

Aim. North America is facing a rising epidemic involving strains of methicillin-resistant Staphylococcus aureus (MRSA) that, instead of being found almost exclusively in hospitals, are community-associated (CA-MRSA). These strains are aggressive, associated with musculoskeletal manifestations including osteomyelitis (OM), and septic arthritis (SA). We aimed to establish novel management algorithms for acute OM and SA in children. We investigated S.aureus susceptibilities to current first-line antimicrobials to determine their local efficacy. Method. The project was conducted at Nemours General Children Hospital in Florida, USA, following approval by the internal review board. A literature review was conducted. An audit of S.aureus antimicrobial sensitivities was completed over three years and compared against national standards. Susceptibilities of clindamycin, trimethoprim/sulfamethoxazole (TMP/SMX) and vancomycin were studied using local resistance ranges. Results. Two algorithms for acute OM and SA management were created adopting a multidisciplinary team approach from admission to discharge whilst differentiating higher risk patients within fast-track pathways. We analysed 532 microbiology results for antibiotic susceptibilities from 2012 to 2014. Overall, 51% of S.aureus infections were MRSA versus 49% methicillin-susceptible S.aureus (MSSA). Surprisingly, clindamycin resistance rates rose compared to 2005 (MRSA 7% in 2005 vs 39% currently, MSSA 20% vs 31% and total S.aureus resistance rate of 8% vs 35%, respectively). MRSA and MSSA isolates were near 100% sensitive to Vancomycin and TMP/SMX. No appropriate national standards existed. Conclusions. Multidisciplinary based algorithms were created for acute OM and SA treatment in children. Possible therapeutic roles for ultrasound guided aspiration and corticosteroids were highlighted in SA. Our audit revealed equal incidence of MSSA to MRSA, supporting national figures on falling MRSA. Interestingly, increased resistance of MSSA and MRSA was found towards recommended first line clindamycin, raising concern over its efficacy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 75 - 75
1 Dec 2016
Butini ME Trampuz A Di Luca M
Full Access

Aim. To investigate the antimicrobial activity of a gentamicin-loaded bone graft substitute (GLBGS) in the prevention and eradication of bacterial biofilms associated with prosthetic joint infections (PJI). Method. The GLBGS (17,5 mg gentamicin/ml paste) with 40% hydroxyapatite/60% calcium sulfate. 1. was tested against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, methicillin-susceptible S. aureus (MSSA) ATCC 29213, Escherichia coli Bj HDE-1, S. epidermidis ATCC 12228 and Enterococcus faecalis ATCC 19433. For prevention studies, glass beads and different combinations of GLBGS were co-incubated for 24h at 37°C in CAMH broth with 1–5 × 10. 6. CFU/mL of bacteria. For eradication, biofilms were formed on glass beads for 24h at 37°C in CAMH broth. Then, beads were incubated with different combinations of GLBGS in medium at 37°C for 24h. For microcalorimetric measurements, beads were placed in ampoules and heat flow (µW) and total heat (J) were measured at 37°C for 24h. The minimal heat inhibitory concentration (MHIC) was defined as the lowest gentamicin concentration reducing the heat flow peak by ≥90% at 24h. Results. The GLBGS showed a good activity against all tested strains in both biofilm prevention and eradication. All MHIC values are reported in Table 1. Lower MHICs were observed when GLBGS was tested against E. coli (9.6 µg/mL prevention and 19.2 µg/mL eradication) and S. epidermidis (86 µg/mL and 38.8 µg/mL, respectively). For both prevention and eradication of MSSA, GLBGS MHIC was 631 µg/mL. E. faecalis biofilm formation was prevented with 631 µg/mL and eradicated with double concentration. MRSA showed a higher resistance to GLBGS up to 2516 µg/mL, both in biofilm prevention and eradication. Conclusions. This GLBGS is a valid composite for the prophylaxis and treatment of PJI. Further studies will be performed to evaluate the activity of higher concentrations of GLBGS against MRSA. 1. CERAMENT™|G, BONESUPPORT AB, Sweden