Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

RADIOIMMUNOTHERAPY COMBATING METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS AND ITS BIOFILM IN VITRO

The European Bone and Joint Infection Society (EBJIS) Meeting, Barcelona, Spain, 26–28 September 2024.



Abstract

Aim

Prosthetic joint infections (PJI) remain a great challenge in orthopedic surgery with a high mortality rate. It is particularly complicated by biofilms and infections caused by Methicillin-resistant Staphylococcus aureus (MRSA). It concurrently shields bacteria from host immune responses and confers resistance to antibiotics. This study aims to investigate the efficacy of radioimmunotherapy as an innovative therapeutic modality to address the challenges posed by MRSA and its biofilm.

Method

We induced specific monoclonal antibodies 4497-IgG1 as carriers, which target wall teichoic acids (WTA) existing on MRSA and its biofilm. Radionuclides actiniumr-225 (225Ac, α-emitter) and lutetium-177 (177Lu, β-emitter) were conjugated with mAbs using DOTA as chelator. Quality control was assessed using thin layer chromatography and immunoreactivity assays. 225Ac- and 177Lu-labelled 4497-IgG1 were employed to evaluate the susceptibility of MRSA and its biofilm to the radioimmunotherapy in vitro. Planktonic MRSA and biofilms, at concentrations of 108 and 107 CFU/mL, were incubated at 37°C for 60 minutes in PBS containing either 225Ac-mAb (0 - 14.8 kBq) or 177Lu-mAb (0 - 14.8 MBq). Radiolabelled dunituximab and free radionuclides serve as isotype-matched negative control. The bacterial viability and metabolic activity were subsequently quantified using CFU and XTT assays.

Results

The radiochemical purity of the 225Ac-mAbs and 177Lu-mAbs complex were determined to be 95.4% and 96.16%. Immunoreactivity fractions of them were measured at 81.8% and 80.8%. 225Ac-mAbs and 177Lu-mAbs exhibited significant and dose-dependent antimicrobial effects on both planktonic MRSA and biofilm. 225Ac- and 177Lu-4497IgG1 at doses of 7.4 kBq and 7.4 MBq resulted in more than 4-log reduction in bacterial counts. In biofilms, 2-log reduction at the highest 225Ac radioactivity of 14,8kBq. The 177Lu complex showed a strong dose-dependent effect, with a reduction of up to 4-log. The XTT assay confirmed these findings, showing a decrease in metabolic activity corresponding to a decrease in bacterial counts, and a slight increase in metabolic activity at the lower dose.

Conclusions

Our study demonstrates the efficacy of 225Ac and 177Lu-labelled 4497-IgG1 antibodies in mediating dose-dependent bactericidal effects against planktonic MRSA and biofilms in vitro. This indicates that radioimmunotherapy could be a potential targeted therapeutic strategy against MRSA and its biofilm. Further research in preclinical and clinical settings is warranted to validate and refine these findings on biofilm-associated implant infections.


Corresponding Author: Zijian Ye