Advertisement for orthosearch.org.uk
Results 1 - 20 of 44
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2016
Beckmann N Bitsch R Seeger J Klotz M Reiner T Kretzer JP Jaeger S
Full Access

Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement. Materials and Methods. Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios. In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B). The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured. Results. Group A showed a significantly decreased cement penetration under the same cementation pressure than group B, yet the interface showed a significantly more stable interface in the measured tests: larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Discussion and Conclusion. The porous metal/cement interface displays substantially more stability than does the bone/cement interface. Although these tests evaluate initial stability in an in-vitro setting, they appear promising with regard to their cemented stability. As a result, a multicomponent porous metal construct with cement interdigitation should not compromise the overall implant primary stability


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 58 - 58
1 Nov 2022
Garg V Barton S Jagadeesh N
Full Access

Abstract. Background. Aim of this study is to determine the difference between re-operation rates after conventional Methods of fixation of patella fractures using Metallic implants and novel technique of all suture fixation using Ethibond or fiber tape. Methods. This is a retrospective comparative analysis involving 62 patients who had a transverse patellar fracture and underwent surgery between January 2013 to December 2021. Selected patients were divided, based on different fixation methods used, into four groups - TBW group, CC screw group, Encirclage group and Suture Fixation Group. Patients were followed till bone union was evident on radiographs. Number of patients in Metallic implant group undergoing repeat operation were compared with the patients who underwent patella fracture fixation using all suture technique. Mean and standard deviation (SD) were calculated for all continuous variables. Mean of the two groups was compared using unpaired t-test. Results. TBW was the most common method of fixation used in 41(66.1%) patients. 7 patients each underwent surgery using CC screw, Encirclage +/− TBW, and suture fixation respectively. Bone union was seen in about 85% of patients in all the groups suggesting all treatment modalities lead to good fracture healing. 15 patients(36.6%) of patients in TBW group and 3 patients(42.9%) in encirclage group had implant removal because of hardware-related complications (p<0.001). None of the patient who underwent All suture Fixation underwent re-operation. Conclusion. The results suggest that Suture fixation of patellar fractures is a valid treatment modality giving excellent results with similar bone union rates without any complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 110 - 110
1 Apr 2019
Farrier A Manning W Moore L Avila C Collins S Holland J
Full Access

INTRODUCTION. Experience with Metal on Metal (MoM) hip resurfacing devices has shown adequate cementation of the femoral head is critical for implant survival. Bone necrosis can be caused by the temperature change in the peri-prosthetic bone whilst the cement cures during implantation. This can lead to implant loosening, head/neck fracture and implant failure. During the implantation it is known that implants change shape potentially altering joint clearance and causing loosening. Given the history of Metal on Metal implant failure due adverse tissue reactions from Cobalt and Chromium particles we sought to test a novel Ceramic on Ceramic (CoC) bearing which may mitigate such problems. AIM. We set out to compare the behaviour of a novel ceramic femoral head component to a standard metal component in a hip resurfacing system after cemented implantation in a physiological warmed cadaveric model. Our first aim was to perform heat transfer analysis: To document time to, and extent of, maximum temperature change on the metal/ceramic surface and inside the resurfaced femoral head bone. Our second aim was to perform a dimensional analysis: To document any resulting deformation in the metal/ceramic femoral head bearing diameter during cementation. METHODS. Femurs were removed from four fresh frozen cadavers and placed into a vice. One surgeon with extensive experience in hip resurfacing surgery (JH) prepared all the femoral heads for implantation. Cadaveric warming was performed using a thermostatic silicone heating element to achieve near physiological conditions (28–32°C). The femur components were then implanted onto the femur head using Simplex P (Stryker) low viscosity bone cement. We used four ceramic (ReCerf™) and four metal implants (ADEPT®) of equal and varying size. (2 × (42mm, 46mm, 48mm, 50mm). Temperature change was measured using a thermometer probe placed into femur neck and head from the lateral side with position check using an image intensifier. Implant surface temperature was measured using a calibrated infrared thermometer at a standard 30cm distance. Head bearing surface diameter was measured using a micro-meter. Measurements were taken 2mins pre-implantation and sequentially at 1, 5, 10, 15, 20, 25 and 30 minutes after implantation. RESULTS. The bone temperature change for both metal and ceramic implants fell after implantation and then increased. The implant surface temperature increased and then stabilised for both implants. There was no significant difference in the bone or surface temperature change between metal and ceramic implants. The bearing surface diameter change was greater in the metal implants, although this was not significant. All implants returned to within one µm of initial surface diameter at 30 minutes. CONCLUSIONS. The femoral head component of a ceramic resurfacing has similar properties for surface temperature change following implantation to conventional MOM resurfacing. The periprosthetic bone is not at risk of significant heat necrosis during cementation (max temp 32°C). The deformation following implantation was similar for both metal and ceramic components. All implants returned to near initial diameter. The deformation and temperature changes following implantation of a ceramic resurfacing are similar to a metal implant


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 80 - 80
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Langohr GD Faber KJ
Full Access

Shoulder arthroplasty is effective at restoring function and relieving pain in patients suffering from glenohumeral arthritis; however, cortex thinning has been significantly associated with larger press-fit stems (fill ratio = 0.57 vs 0.48; P = 0.013)1. Additionally, excessively stiff implant-bone constructs are considered undesirable, as high initial stiffness of rigid fracture fixation implants has been related to premature loosening and an ultimate failure of the implant-bone interface2. Consequently, one objective which has driven the evolution of humeral stem design has been the reduction of stress-shielding induced bone resorption; this in-part has led to the introduction of short stems, which rely on metaphyseal fixation. However, the selection of short stem diametral (i.e., thickness) sizing remains subjective, and its impact on the resulting stem-bone construct stiffness has yet to be quantified. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized and 2mm ‘oversized’ short-stemmed implants. Standard stem sizing was based on a haptic assessment of stem and broach stability per typical surgical practice. Anteroposterior radiographs were taken, and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of compressive loading representing 90º forward flexion to simulate postoperative seating. Following this, a custom 3D printed metal implant adapter was affixed to the stem, which allowed for compressive loading in-line with the stem axis (Fig.1). Each stem was then forced to subside by 5mm at a rate of 1mm/min, from which the compressive stiffness of the stem-bone construct was assessed. The bone-implant construct stiffness was quantified as the slope of the linear portion of the resulting force-displacement curves. The metaphyseal and diaphyseal fill ratios were 0.50±0.10 and 0.45±0.07 for the standard sized stems and 0.50±0.06 and 0.52±0.06 for the oversized stems, respectively. Neither was found to correlate significantly with the stem-bone construct stiffness measure (metaphysis: P = 0.259, diaphysis: P = 0.529); however, the diaphyseal fill ratio was significantly different between standard and oversized stems (P < 0.001, Power = 1.0). Increasing the stem size by 2mm had a significant impact on the stiffness of the stem-bone construct (P = 0.003, Power = 0.971; Fig.2). Stem oversizing yielded a construct stiffness of −741±243N/mm; more than double that of the standard stems, which was −334±120N/mm. The fill ratios reported in the present investigation match well with those of a finite element assessment of oversizing short humeral stems3. This work complements that investigation's conclusion, that small reductions in diaphyseal fill ratio may reduce the likelihood of stress shielding, by also demonstrating that oversizing stems by 2mm dramatically increases the stiffness of the resulting implant-bone construct, as stiffer implants have been associated with decreased bone stimulus4 and premature loosening2. The present findings suggest that even a small, 2mm, variation in the thickness of short stem humeral components can have a marked influence on the resulting stiffness of the implant-bone construct. This highlights the need for more objective intraoperative methods for selecting stem size to provide guidelines for appropriate diametral sizing. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 107 - 107
1 Mar 2017
Reiner T Bader N Panzram B Kretzer J Zeifang F
Full Access

Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood metal ion levels in patients after TSA and to compare blood metal ion levels to control subjects without metal implants. Methods. A total of 19 patients with anatomical total shoulder prosthesis (TSA group) and 20 patients with reverse total shoulder prosthesis (RSA group) who underwent unilateral total shoulder replacement at our hospital between March 2011 and December 2014 with no other metal implant or history of environmental metal ion exposure were recruited for analysis of blood metal ion concentrations of cobalt (Co), chromium (Cr) and titanium (Ti) at a mean follow-up period of 2.3 years (0.7–4.3). For comparison of metal ion concentrations blood samples were obtained in a healthy control group of 23 subjects without metal implants. Ethical approval and informed consent of each patient were obtained for this study. Results. Median cobalt ion levels were 0.14µg/l (range 0.03–0.48) in the TSA group, 0.18 µg/l (0.10–0.66) in the RSA group and 0.11µg/l (0.03–0.19) in the control goup. Median chromium ion levels were 0.34µg/l (0.09–1.26) in the TSA group, 0.48µg/l (0.17–2.41) in the RSA group and 0.14µg/l (0.04–0.99) in the control goup. Median titanium ion levels were 0.86µg/l (0.10–1.64) in the TSA group, 1.31µg/l (0.75–4.52) in the RSA group and 0.62µg/l (0.32–2.14) in the control goup. There was a statistically significant difference in chromium and titanium ion concentrations between both study groups and the control group (see figure 1–3). Conclusion. Patients with unilateral total shoulder replacement demonstrated elevated blood metal ion concentrations. Median blood metal ion levels were higher in the RSA group compared to the TSA group, which could be attributable to the modularity of the reverse total shoulder system. However, overall metal ion levels were relatively low compared to those seen in patients with metal-on-metal total hip replacements. The role of local metal ion exposure in the development of aseptic loosening or hypersensitivity reactions associated with total shoulder arthroplasty should be further investigated. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 112 - 112
1 Apr 2019
Farrier A Manning W Moore L Avila C Collins S Holland J
Full Access

INTRODUCTION. The cup component of modern resurfacing systems are often coated creating a cementless press-fit fixation in the acetabulum based on surgical under-reaming, also enabling osseoconduction/integration. Due to the higher density of cortical bone along the antero-superior and postero-inferior regions of the acetabulum, the greatest forces occur between the anterior and posterior columns of the pelvis. This produces pinching of the implant that can result in deformation of the cup. Metal shell/modularpress-fit acetabular cups are susceptible to substantial deformation immediately after implantation. This deformation may affect the lubrication, producing point loading and high friction torques between the head and the cup that increase wear and may lead to head clamping and subsequent cup loosening. We sought to test a novel ceramic on ceramic (CoC) hip resurfacing system that should allay any concerns with the Adverse Reaction to Metal Debris associated with metal on metal (MoM) resurfacing devices. AIM. We sought to quantify the deformation of a novel CoC hip-resurfacing cup after implantation, using a standard surgical technique in a cadaveric model, and compare to the MoM standard. We also assessed if the design clearances proposed for this CoC hip resurfacing implant are compatible with the measured deformations, allowing for an adequate motion of the joint. METHODS. The pelvis from four fresh frozen cadavers were placed into the lateral position. One surgeon with extensive experience in hip resurfacing surgery (JH) prepared all the pelvises for implantation using a posterior approach to the joint and sequential reaming of the acetabulum to 1mm below the implant outer diameter. The acetabulum components were then impacted into the prepared pelvis. We used four ceramic and four metal implants of equal and varying size. (2 × (40/46mm, 44/50mm, 50/56mm, 52/58mm)). The acetabulum cup bearing surface diameter and deformation was measured using a GOM-ATOS optical high precision 3D scanner. 3-Dimensional measurements were taken pre-implantation, immediately after and at 30 minutes following implantation. Two techniques were used to analyse the 3D images: by maximum inscribed diameter and by radial segments. These were compared to the known articulating surface clearance values. RESULTS. The diameter of the cups in both metal and ceramic systems was reduced after implantation when analysing by maximum inscribed diameter and by radial segments. This deformation was maintained at 30 minutes. We can infer there is no significant bone stress relaxation effect following implantation. On ceramic cups, the deformation was larger in larger sizes. However, the 44/50 (the second smallest cup) deformed the least. Despite this, the difference in deformation between these two sizes is minimal. The deformation of sizes 50/56 and 52/58 was equivalent. For the metal cups, there was not a clear correlation between the cup size and the deformation. The largest cup size had the same deformation as the smallest size. CONCLUSIONS. The deformation following implantation of the cup component in a ceramic acetabulum resurfacing behave similarly to a metal implant. Cup deformation measured after implantation is minimal when compared to the minimum design clearance in both systems


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 132 - 132
1 Jan 2016
Rankin K Dickinson A Briscoe A Browne M
Full Access

Introduction. Periprosthetic bone remodelling after Total Knee Arthroplasty (TKA) may be attributed to local changes in the mechanical strain field of the bone as a result of the stiffness mismatch between high modulus metallic implant materials and the supporting bone. This can lead to significant loss of periprosthetic bone density, which may promote implant loosening, and complicate revision surgery. A novel polyetheretherketone (PEEK) implant with a modulus similar to bone has the potential to reduce stress shielding whilst eliminating metal ion release. Numerical modelling can estimate the remodelling stimulus but rigorous validation is required for use as a predictive tool. In this study, a finite element (FE) model investigating the local biomechanical changes with different TKA materials was verified experimentally using Digital Image Correlation (DIC). DIC is increasingly used in biomechanics for strain measurement on complex, heterogeneous anisotropic material structures. Methodology. DIC was used following a previously validated technique [1] to compare bone surface strain distribution after implantation with a novel PEEK implant, to that induced by a contemporary metallic implant. Two distal Sawbone® femora models were implanted with a cemented cobalt-chromium (CoCr) and PEEK-OPTIMA® femoral component of the same size and geometry. A third, unimplanted, intact model was used as a reference. All models were subjected to standing loads on the corresponding UHMWPE tibial component, and resultant strain data was acquired in six repeated tests. An FE model of each case, using a CT-derived bone model, was solved using ANSYS software. Results and Discussion. The sensitivity of DIC strain measurements was <+130με and experimental error was +230με, or 8.5% of the peak magnitude in the region of interest. High bone strain adjacent to the CoCr implant and low bone strain in the central metaphyseal region compared to the intact case (Fig.1) indicated that stress shielding may lead to resorption, a theory corroborated by bone density scans of implanted metallic TKRs [2]. Quantitatively, wider scatter and greater deviation was observed between the intact-vs-CoCr datasets (R. 2. : 0.425, slope = 0.508). A closer agreement was shown between the intact-vs-PEEK datasets (R. 2. : 0.771, slope = 1.270) (Fig.2). These strain distributions corroborated the predictions of the FE analysis (Fig.1). High bone strain in regions close to the CoCr implant can be attributed to the high stiffness mismatch between implant and bone, where the bone is constrained to the implant with cement. High strain gradients near the stiff CoCr could potentially compromise implant fixation, leading to loosening. The compressive strains in the PEEK implanted model were similar to those in the intact case, suggesting that bone would be maintained in these regions, and high strain gradients were not observed. Conclusion. Digital image correlation and FE analysis have been successfully employed for evaluation of a novel PEEK-OPTIMA® TKA implant in comparison to a metallic implant. The polymeric implant produced a strain distribution closer to that of the intact bone, and therefore would be expected to have less of a stress shielding effect, improving long term bone preservation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 1 - 1
1 Feb 2021
Tavakoli A Faber K Langohr G
Full Access

Introduction. Total shoulder arthroplasty (TSA) is an effective treatment to restore shoulder function and alleviate pain in the case of glenohumeral arthritis [1]. Stress shielding, which occurs when bone stress is reduced due to the replacement of bone with a stiffer metallic implant, causes bone resorption of up to 9% of the humeral cortical thickness following TSA [2]. Shorter length stems and smaller overall geometries may reduce stress shielding [3], however the effect of humeral head backside contact with the resection plane has not yet been fully investigated on bone stress. Therefore, the purpose of this study was to quantify the effect of humeral head contact conditions on bone stresses following TSA. Methods. 3D models of eight male left cadaveric humeri (68±6 years) were generated from CT data using MIMICS. These were then virtually prepared for reconstruction by an orthopaedic surgeon to accept a short-stem humeral implant (Exactech Equinoxe® Preserve) that was optimally sized and placed centrally in the humeral canal. The humeral head was positioned in the inferior-medial position such that contact was achieved on the medial cortex, and no contact existed on the lateral cortex. Three different humeral head backside contact conditions were investigated (Figure 1); full backside contact (FULL), contact with only the inferior-medial half of the resection (INF), and contact with only the superior-lateral half of the resection (SUP). Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation [4]. A joint reaction force was then applied representing 45˚ and 75˚ of abduction [5]. Changes in bone stress, as well as the expected bone response based on change in strain energy density [6] was then compared between the intact and reconstructed states. Results. For cortical bone, the full backside contact altered bone stress by 28.9±5.5% compared to intact, which was significantly less than the superior (37.0±3.9%, P=0.022) and inferior (53.4±3.9%, P<0.001) backside contact conditions. Similar trends were observed for changes in trabecular bone stress relative to the intact state, where the full backside contact altered bone stress by 86.3±27.9% compared to intact, compared to the superior and inferior contact conditions, which altered bone stress by 115.2±45.0% (P=0.309) and 197.4±80.2% (P=0.024), respectively. In terms of expected bone response, both the superior and inferior contact resulted in an increase in bone volume with resorbing potential compared to the full contact (Figure 2). Discussion and Conclusions. The results of this study show that full humeral head backside contact with the humeral resection plane is preferable for short stem humeral TSA implants with the head in the inferior-medial position. As expected, the superior contact typically increased resorption potential in the medial quadrant due to the lack of load transfer, however interestingly the inferior contact increased resorption potential in both the lateral and medial quadrants. Analysis of implant micromotion showed that medial liftoff of the implant occurred, which resulted in a lack of load transfer in the most medial aspect of the resection plane. For any figures or tables, please contact the authors directly


Recently, our lab has made observations of metal damage patterns from retrieval studies that appeared to be cellular in nature [1]. This type of damage presented on about 74% of the retrieved implants and was attributed to inflammatory cells (termed ICI corrosion) [1]. An alternate hypothesis arose surrounding the use of electrosurgery in total joint arthroplasty (TJA). In TJA, where surgery occurs around metallic devices, the interactions of the high voltage, high frequency current created by an electrosurgical generator and the implant need to be better understood. In order to explore the effects electrosurgical currents have on metal implants, the interaction of a model system of highly polished metal disks and a standard electrosurgical generator (ConMed, Utica, NY) was evaluated in various modes and power settings. The disks were made of CoCrMo or Ti-6Al-4V alloys and were polished to a mirror finish for use and placed directly on the return electrode pad used in patients. Both coagulation and cut modes were evaluated, as well as both monopolar and bipolar configurations in wet and dry conditions using a blade-shaped tip. In wet cases, the disks were wet with phosphate buffered saline prior to the test to simulate body fluids in contact with the implant during current application. In all cases, surface damage was generated on both surfaces and was readily observed as a direct result of the current interacting with the metal (Fig. 1 and 2). Direct contact with the metal, regardless of a dry or wet surface, resulted in pitting and oxide buildup at the contact area. Non-contact activation in proximity to the surface or contact with fluid on the surface caused arcing and created damage that was more widespread over the area of fluid contact with the surface. The damage patterns created on the wetted surface by the electrosurgical unit looked very similar to the patterns we previously attributed to inflammatory cells. More specifically, it produced circular, ruffled areas with centralized pits and occasionally presented trail- and weld-like features (Fig. 2). While these results show that some of the damage previously reported to be from ICI corrosion is indeed the result of electrosurgery, there are still cases in retrievals that cannot be explained by this process and the corrosion reaction to alloys exposed to ROS-based molecules demonstrate significant acceleration of corrosion. Thus, ICI corrosion is still a viable hypothesis. Surgeons utilizing electrosurgical systems in proximity to metallic orthopedic implants need to exercise caution as the discharge of electrical energy through these implants can induce localized surface damage and may result in other adverse effects to the metal implants. Ultimately, we would like to update the community on the nature of the damage we previously reported and more importantly bring to light the possibility of surgeon-induced damage to the implant as a result of electrosurgical methods


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 83 - 83
1 Jul 2014
Lieberman J
Full Access

Metal on metal bearing surfaces were used frequently until recently because of the potential for decreased wear and the ability to use large femoral heads which can reduce instability. However, data reported in the Australian registry over the past 5 years demonstrated an increase in failure rates compared to metal on polyethylene bearings. In addition, adverse local tissue reactions (ALTR) associated with pseudotumors and destruction of the soft tissue around the joint have led to revision of these implants. Unfortunately, at the present time there is no optimal management strategy that has been delineated for metal on metal implants because of a lack of evidence. The biologic response to metal on metal implants is usually local but may be systemic. The management of these patients is complex because patients may have pseudotumors and/or elevated metal ion levels and be asymptomatic. In addition, there are a number of intrinsic causes (loosening, infection, iliopsoas tendinitis) and extrinsic causes (spinal disease, trochanteric bursitis) that can be a source of pain. There is no evidence based approach to manage these patients and no single test should be used to determine treatment. A thorough clinical evaluation is essential and blood tests are necessary to rule out infection. Imaging studies including plain radiographs and a MARs MRI are needed to evaluate either the stability of the prosthesis and to assess for the presence of pseudotumors and soft tissue destruction around the implant. Patients with symptomatic hips and evidence of muscle involvement on MRI require revision. Finally, the clinician must always be aware of the potential for systemic effects which require early and aggressive intervention to limit the adverse response to the metal and the metal bearing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 73 - 73
1 Jul 2020
Yeoh J Chin P Regan WD Lim B Sasyniuk T Sayre E
Full Access

Glenoid failure remains the most common mode of total shoulder arthroplasty failures. Porous tantalum metal (Trabecular Metal™, Zimmer) have grown in popularity in hip and knee arthroplasty. First-generation porous tantalum metal-backed glenoid components demonstrated metal debris, resulted in failure, and were revised to second-generation glenoid implants. Evidence for second-generation porous tantalum metal implants in shoulder arthroplasty is sparse.1–4 The purpose of this study was to assess clinical and radiographic outcomes in a series of patients with second-generation porous tantalum glenoid components at a minimum two-years postoperative. We retrospectively reviewed the clinical and radiographic outcomes of patients who received a second-generation porous tantalum glenoid component anatomic shoulder arthroplasty between May 2009 and December 2017 with minimum 24 months follow-up. The shoulder arthroplasties were performed by one of two senior fellowship-trained surgeons. We collected postoperative clinical outcome indicators: EQ5D visual analog scale (VAS), Western Ontario Osteoarthritis of the Shoulder (WOOS) Index, American Shoulder and Elbow Surgeons (ASES) Score, and Constant Score (CS). Radiographic review was performed by an independent fellowship-trained surgeon. The Endrizzi metal debris grading system1 was utilized to grade metal debris. We computed descriptive statistics and compared outcome scores between groups via the non-parametric Wilcoxon rank-sum test, with group-wise comparisons defined by: metal debris and humeral head migration (secondary analyses). Thirty-five patients [23 male (65.7%) and 12 female (34.3%)] with 40 shoulder replacements participated in the study. Forty of 61 shoulders (65.6%) had an average of 64 ± 20.3 months follow-up (range 31 to 95). Average BMI was 27.5 ± 4.4 kg/m2 (range 19.5 to 39.1). The average postoperative EQ5D VAS at final follow-up was 74.6 ± 22.5, WOOS Index 87.9 ± 16.6, ASES Score 88.3 ± 10.9, and CS 80.4 ± 13. At final follow-up, 18 of 40 shoulders (45%) had metal debris [15 of 40 (37.5%) Endrizzi grade 1 and three of 40 (7.5%) Endrizzi grade 2], and 22 of 40 shoulders (55%) did not show evidence of metal debris. There was one non-revision reoperation (open subscapularis exploration), one shoulder with anterosuperior escape, three shoulders with glenoid radiolucencies indicative of possible glenoid loosening, and nine shoulders with superior migration of the humeral head (>2mm migration at final follow-up compared to immediate postoperative). When comparing postoperative scores between patients with vs without metal debris, we found no statistically significant difference in the EQ5D VAS, WOOS Index, ASES Score and CS. On further analyses, when comparing superior migration of the humeral head and postoperative outcomes scores, we found no statistically significant difference. We report the longest published follow-up with clinical and radiographic outcomes of second-generation porous tantalum glenoid anatomic shoulder arthroplasties. In this series of patients, 45% of total shoulder arthroplasties with a second-generation porous tantalum glenoid implant had radiographic evidence of metal debris. This metal debris was not statistically associated with poorer postoperative outcomes. Further investigation and ongoing follow-up are warranted


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 6 - 6
1 Apr 2013
Singh R Rambani R Kanakaris N Giannoudis PV
Full Access

Introduction. Clavicle fractures can cause pain and functional impairment if not managed appropriately. This paper evaluates the prevalence of clavicular fractures, estimates number of cases requiring operative treatment, whether removal of implant is a frequent necessity and compares the final functional outcome of the operative and non-operative group. Materials/Methods. Between November 2005 and November 2007 patients with clavicular fractures were eligible for participation. Patients below 18 years of age, and pathological fractures were excluded. Operative versus non-operative treatment, radiographic classification (Allman system), complications, implant removal, and functional outcome using the University of California Los Angeles (UCLA) shoulder scores were documented and analysed. Results. Out of 16,280 fractures presenting to our University Teaching Hospitals, 200 (1.23%) met the inclusion criteria. Twenty patients were lost due to natural attrition, 159 (88.3%) patients were treated non-operatively and 21 (11.7%) patients operated upon, over half for symptomatic non-union. All clavicles united post operatively. Eighty one conservatively managed undisplaced medial, middle and lateral end fractures had excellent mean UCLA shoulder scores. A statistical significance in UCLA scores (p<0.05) was noted between the operative and non-operative groups in mid shaft fractures. Under half (42.9%) required removal of metal implant sue to soft tissue irritation with complete resolution of symptoms. Conclusion. The incidence of clavicle fractures was 1.23%. A small number of patients (11.7%) required operative treatment. We recommend surgical management of symptomatic non-union and removal of metal implant for hard ware related symptoms


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 99 - 99
1 Feb 2020
Schroder F Post C Simonis F Wagenaar F in'tVeld RH Verdonschot N
Full Access

Introduction. Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA. Method. Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m. 3. , matrix size 224×216). Scans were analysed by two observers for:. - Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance. - Prosthesis malalignment: femoral component rotation using the posterior condylar angle (PCA) and tibial rotation using the Berger angle. Significance of differences in parameters between weight-bearing and non-weight-bearing were calculated with the Wilcoxon rank test. To assess the reliability the inter and intra observer reliability was calculated with a two-way random effects model intra class correlation coefficient (ICC). The two unsatisfied patients underwent revision arthroplasty and intra-operative findings were compared with MRI findings. Results. In the satisfied group, a significant difference was found between TT-TG distance in non-weight-bearing and weight-bearing condition (p=0.018), with a good interrater reliability ICC=0.89. Furthermore, differences between weight-bearing and non-weight-bearing were found for the CD ratio, however, not significant (p=0.093), with a good interrater reliability ICC=0.89. The Berger angle could be measured with an excellent interrater reliability (ICC=0.94). The PCA was hard to assess with a poor interrater reliability (ICC=0.48). For one unsatisfied patient a deviation was found for tibial component rotation, according to the perioperative findings as, ‘malposition of the tibial component’. For the other unsatisfied patient revision surgery was performed due to aseptic loosening in which the MRI showed a notable amount of synovitis. Conclusion. It is possible to image the patellofemoral joint and knee prosthesis with low field MRI. Patellofemoral measurements and tibial component rotation measurements can reliably be performed. For the two patients with complaints MRI findings were consistent with intra-operative findings. Further research should focus on a larger group of patients with complaints after TKA to verify the diagnostic capacity of low field MRI for peri-prosthetic knee problems. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 82 - 82
1 Feb 2020
Zobel S Huber G King M Pfeiffer D Morlock M
Full Access

Introduction. During revision surgery, the active electrode of an electrocautery device may get close to the implant, potentially provoking a flashover. Incidents have been reported, where in situ retained hip stems failed after isolated cup revision. Different sizes of discoloured areas, probably induced by electrocautery contact, were found at the starting point of the fracture. The effect of the flashover on the implant material is yet not fully understood. The aim of this study was to investigate the fatigue strength reduction of Ti-6Al-4V titanium alloy after electrocautery contact. Material and Methods. 16 titanium rods (Ti-6Al-4V, extra low interstitial elements, according to DIN 17851, ⊘ 5 mm, 120 mm length) were stress-relief annealed (normal atmosphere, holding temperature 622 °C, holding time 2 h) and cooled in air. An implant specific surface roughness was achieved by chemical and electrolytic polishing (Ra = 0.307, Rz = 1.910). Dry (n = 6) and wet (n = 6, 5 µl phosphate buffered saline) flashovers were applied with a hand-held electrode of a high-frequency generator (Aesculap AG, GN 640, monopolar cut mode, output power 300 W, modelled patient resistance 500 Ω). The size of the generated discoloured area on the rod's surface - representative for the heat affected zone (HAZ) - was determined using laser microscopy (VK-150x, Keyence, Japan). Rods without flashover (n = 4) served as control. The fatigue strength of the rods was determined under dynamic (10 Hz, load ratio R = 0.1), force-controlled four-point bending (FGB Steinbach GmbH, Germany) with swelling load (numerical bending stress 852 MPa with a bending moment of 17.8 Nm) until failure of the rods. The applied bending stress was estimated using a finite-element-model of a hip stem during stumbling. Metallurgical cuts were made to analyse the microstructure. Results. The control rods failed at the pushers of the setup (median: 94,550, range: 194,000 cycles). The rods with flashover failed directly at the HAZ significantly earlier than the control rods (p = 0.018). The analysis of the microstructure showed a transformation of the equiaxed α+β microstructure to a bimodal state. The size of the HAZs were equal for the dry (median: 1.51 mm. 2. , range: 5.68 mm. 2. ) and wet flashovers (median: 0.92 mm. 2. , range: 2.50 mm. 2. , p = 0.792). The cycles to failure were smaller for the dry flashover (median: 22,650 cycles, range: 5,700) than the wet flashover but not reaching statistical significance (median: 32,200, range: 57,900; p = 0.052). No correlation between the dimension of the HAZs and the cycles to failure was found (dry: r. 2. = 0.019, p = 0.8; wet: r. 2. = 0.015, p = 0.721). Discussion. Flashovers induced by an electrocautery device reduce the fatigue strength of Ti-6Al-4V. Since no correlation between the size of the HAZs and the cycles to failure was found, every contact between electrocautery devices and metal implants should be avoided. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2019
Greene A Hamilton M Polakovic S Mohajer N Youderian A Wright T Parsons I Saadi P Cheung E Jones R
Full Access

INTRODUCTION. Variability in placement of total shoulder arthroplasty (TSA) glenoid implants has led to the increased use of 3D CT preoperative planning software. Computer assisted surgery (CAS) offers the potential of improved accuracy in TSA while following a preoperative plan, as well as the flexibility for intraoperative adjustment during the procedure. This study compares the accuracy of implantation of reverse total shoulder arthroplasty (rTSA) glenoid implants using a CAS TSA system verses traditional non-navigated techniques in 30 cadaveric shoulders relative to a preoperative plan from 3D CT software. METHODS. High resolution 1mm slice thickness CT scans were obtained on 30 cadaveric shoulders from 15 matched pair specimens. Each scan was segmented and the digital models were incorporated into a preoperative planning software. Five fellowship trained orthopedic shoulder specialists used this software to virtually place a rTSA glenoid implant as they deemed best fit in six cadavers each. The specimens were randomized with respect to side and split into a cohort utilizing the CAS system and a cohort utilizing conventional instrumentation, for a total of three shoulders per cohort per surgeon. A BaSO. 4. PEEK surrogate implant identical in geometry to the metal implant used in the preoperative plan was used in every specimen, to maintain high CT resolution while minimizing CT artifact. The surgeons were instructed to implant the rTSA implants as close to their preoperative plans as possible for both cohorts. In the CAS cohort, each surgeon used the system to register the native cadaveric bones to each respective CT, perform the TSA procedure, and implant the surrogate rTSA implant. The surgeons then performed the TSA procedure on the opposing side of the matched pair using conventional instrumentation. Postoperatively, CT scans were repeated on each specimen and segmented to extract the digital models. The pre- and postoperative scapulae models were aligned using a best fit match algorithm, and variance between the virtual planned position of the implant and the executed surgical position of the implant was calculated [Fig 1]. RESULTS. For version and inclination, implants in the CAS cohort showed significantly less deviation from preoperative plan than those in the non-navigated cohort (Version: 1.9 ± 1.9° vs 5.9 ± 3.5°; p < .001; Inclination: 2.4 ± 2.5° vs 6.3 ± 6.2°; p = .031). No significant difference was noted between the two cohorts regarding deviation from the preoperative plan in anterior-posterior and superior-inferior positioning on the glenoid face (1.5 ± 1.0mm CAS cohort, 2.4 ± 1.3mm non- navigated cohort; p = .055). No significant difference was found for deviation from preoperative plan for reaming depth (1.1. ± 0.7mm CAS cohort, 1.3 ± 0.9mm non-navigated cohort; p =.397). CONCLUSION. The results of this study demonstrate that this CAS navigation system facilitates a surgeon's ability to more accurately reproduce their intended glenoid implant version and inclination (with respect to their preoperative plan), compared to conventional non-navigated techniques. Future work will determine if more accurate and precise implant placement is associated with improved clinical outcomes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 59 - 59
1 Jun 2018
Su E
Full Access

Surface coatings have been introduced to total joint orthopaedics over the past decades to enhance osseointegration between metal implants and bone. However, complications such as aseptic loosening and infection persist. Inadequate osseointegration remains a complication associated with implants that rely on osseointegration for proper function. This is particularly challenging with implants having relatively flat and small surface areas that have high shear loading, such as noncemented uni and total condylar knee tibial trays. Faster osseointegration can enhance recovery as a result of improved load distribution and a more stable bone-implant interface. Traditionally noncemented porous bone ingrowth coatings on knee, hip and shoulder implants are typically texturised by thermal plasma spray coating, sintered metal bead coatings, or 3-D additive manufactured structures that provide porous surface features having the rough texture with pore sizes on the order of 150 to 300 micrometers. These surfaces are often further chemically enhanced with hydroxyapatite (HA) deposition. This provides macro-mechanical (millimeter scale) and micro-mechanical (micrometer scale) bone remodeling into the implant surface. However, at the nanoscale and cellular level, these surfaces appear relatively smooth. More recent studies are showing the importance of controlling the macro, micro, and the nano (nanometer scale) surface topographies to enhance cell interaction. In vitro and in vivo research shows surfaces with nanoscale features in the metal substrate result in enhanced osseointegration, greater bone-implant contact area and pullout force, and potentially bactericidal. One surface modification treatment technique of particular promise is nano-texturing via electrochemical anodization to bio-mimicking TiO2 nanotube arrays that are superimposed onto existing porous surface microstructures to further enhance the already known bone ingrowth properties of these porous structures by superimposing onto the existing microstructure arrays of nanotubes approximately 100 nanometers in outside diameter and 300–500 nanometers in height. In an ovine model, 3-D printed Direct Metal Laser Deposition (DMLS) additive manufactured porous Ti-6Al-4V implant with and without TiO2 nanotube array nano-texturing were compared to similar sized implants with commercially available sintered beads with HA coating and additive manufactured cobalt chrome implants. The average bond strength was significantly higher (42%) when the implants were nano-texturised and similarly stronger (53%) compared to HA coated sintered bead implants. Histology confirms over 420% more direct bonded growth of new bone from 0.5mm to 1.0mm deep into the porosity on the implants when the same implants are nano-texturised. Nano-texturing also changes the surface of the implant to repel methicillin-resistant staphylococcus aureus (MRSA) in an in vivo rabbit model limiting biofilm formation on the porous surface compared with non-treated porous surfaces. Since nano-texturizing only modifies the nano-morphology of the surface and does not add antibiotics or other materials to the implant, these animal studies shows great promise that nano-texturizing the TiO2 coating may not only enhance osseointegration, but also repels bacteria from porous implant surfaces. As such, we believe nano-texturing of porous implants will be the next advancement in surface coating technology


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 84 - 84
1 Dec 2016
Wahl P Post V Richards G Moriarty F
Full Access

Aim. Determine the time concentration profile required to achieve vancomycin-mediated eradication of Staphylococcus aureus biofilm. This is critical for the identification of performance targets for local antibiotic delivery, yet has not been described. Method. Mature S. aureus UAMS-1 biofilms were grown on titanium-aluminum-niobium discs in Mueller Hinton broth (MHB). After 7 days, the discs were incubated in MHB containing vancomycin at 100, 200, 500, 1′000 and 2′000 mg/L. Both static and shaking conditions were tested. Samples were retrieved at intervals for up to 28 days for quantification of residual biofilm by sonication and serial dilution plating. One additional disc was processed per time point for scanning electron microscopy. Results. Progressive and significant reduction of viable bacteria was observed over time at all vancomycin concentrations in both static and shaking conditions. After 28 days under static conditions, the S. aureus biofilm was completely eradicated at 200 mg/L vancomycin and higher concentrations. Biofilm could could however not be eradicated under shaking conditions at any concentration. Logistic regression documents time of exposure at ≥200 mg/L as being the essential determinant of eradication. Conclusions. The clinical relevance of the present study is that it is not impossible to eradicate mature S. aureus biofilm from metal implants by vancomycin alone, fostering efforts to optimize local delivery. The required time concentration profile cannot be achieved yet by systemic administration or any of the local delivery vehicles available. Even longer exposure as 28 days might be required as wound fluid flow might influence unfavourably biofilm resistance to vancomycin


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 101 - 101
1 May 2016
Ziaee H Daniel J McMinn D
Full Access

Metal-metal surface replacement (MoMSRA) is increasingly used in the young. Systemic metal ion release and its effects cause concern. Do metal ions cross the placenta in pregnant women with potential mutagenic effects? The hypothesis is that metal ions pass freely through the placenta and there is no difference in maternal and cord metal levels. This is a controlled cross-sectional study of women with MoMSRA. (n=25, mean age 32years, implantation 60months, 3 bilateral). The control group were 24 subjects with no metallic implant and not receiving cobalt/chromium supplements, mean age 31years. No patient was known to have renal failure. Whole blood specimens were obtained before delivery/ fluid-infusion and Cord blood specimens immediately after delivery. Cobalt and chromium were detectable in all specimens in both cohorts. In the control group, the difference between maternal and cord levels was only 5 to 7% indicating free passage. Study group cord levels were significantly lower than maternal cobalt, p<0.05 and chromium p<0.0001 thus rejecting the null hypothesis. The differences between maternal and cord metal ions in the controls indicate that normally the placenta allows an almost free passage of metal ions. The relative levels of metal ions in the maternal and cord blood in the study group reveal that the placenta exerts a modulatory effect on metal transfer


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 59 - 59
1 Dec 2016
Hislop S McKenna D Coathup MJ Blunn G Briggs T
Full Access

Aim. Photodynamic therapy (PDT) requires a photosensitiser, a light source of an appropriate wavelength, and the presence of molecular oxygen. Once stimulated to its excited phase by the light, the photosensitiser reacts with oxygen to form free radicals of ‘singlet oxygen’ which is cytotoxic to microorganisms. We aim to demonstrate the effectiveness of PDT as an in-vitro antimicrobial technique against Staphylococcus aureus, Methicillin resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Acinetobacter bauminii. This will form the scientific basis for further animal and human studies assessing PDT for treatment of periprosthetic infections, septic arthritis, and open fractures. Method. A PDT treatment protocol was devised using lawns of bacteria on agar plates. PDT was targeted towards the bacteria and the remaining microorganisms were quantified using a serial dilution technique. In order to assess the ability of photodynamic therapy to target biofilms on metallic implants, biofilms were cultured on polished titanium and hydroxyapatite-coated titanium discs and subjected to PDT. Results. Reductions in bacterial colony forming units of up to 7 log were achieved using PDT. The figure is a box plot representing a comparison of the amount of biofilm Pseudomonas aeruginosa (cfu/ml) remaining on the polished titanium disc and hydroxyapatite-coated titanium disc following treatment with photodynamic therapy. (MB+/-: photosensitizer present/absent; L+/-: laser present/absent). Conclusions. PDT has long been used in dermatology and dentistry as an antimicrobial technique. Its potential for treating orthopaedic infections has not yet been investigated. This study demonstrates potential for PDT as an antimicrobial technique in the treatment of bacteria commonly found in periprosthetic infections, septic arthritis, and open fractures. This in-vitro work lays the foundations for future animal and clinical studies. We envision PDT being used as an adjunct to antibiotics in treatment of these conditions, helping prevent ongoing infection, and the development of resistance


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 12 - 12
1 Mar 2017
Wodowski D Kerkhof A Mihalko W
Full Access

Introduction. Gelsolin (GSN) is a protein whose function in the cytoplasm is to regulate intracellular actin assembly, while circulating plasma GSN has been implicated in the clearance of cellular byproducts via the body's scavenger system. In knee synovial fluid, GSN appears to be protective of inflammation as lower levels have been found in patients with rheumatoid arthritis while higher levels have been demonstrated in hypersensitivity reactions to metallic implants. The purpose of this study is to define the role of GSN in painful total knee arthroplasty (TKA) patients as a biomarker to distinguish septic from aseptic diagnoses. Methods. After Institutional Review Board (IRB) approval, 50 patients were enrolled in the study into two cohorts. 25 patients presented with a painful TKA and 25 patients had a painful native knee with primary osteoarthritis (OA). Synovial fluid was obtained from each patient's affected knee. Appropriate lab and culture data was also obtained from the painful TKA group. An ELISA was used to determine GSN levels and the groups were compared. Two tailed Student's t tests were used to compare means while Pearson's Correlation Coefficient and linear regression analyses were used to determine association between laboratory findings and GSN levels. Results. 11 of 25 knees in the TKA group had culture positive aspirations while the remaining 14 were sterile and determined to have aseptic component loosening. There was a significant difference in the GSN levels of the entire TKA cohort when compared to the OA group (TKA = 41,218 ng/mL; OA = 84,188 ng/mL; p = 0.002), with no difference noted between the infected and sterile TKA patients (infected = 43,210 ng/mL; sterile = 39,654 ng/mL; p = 0.63). There was a high correlation of ESR and CRP to GSN in the infected TKA group (r = 0.66 and 0.93 respectively; [Fig. 1 and 2]). Discussion. GSN levels correlate highly to other commonly used markers of periprosthetic joint infection (PJI), with overall lower levels seen in PJI when compared to patients with OA. However, GSN levels may be indicative of a painful total knee arthroplasty for multiple reasons, and further study is needed to delineate its role as a biomarker of PJI as well as specific aseptic TKA diagnoses