Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FATIGUE STRENGTH REDUCTION OF TITANIUM ALLOY TI-6AL-4V DUE TO ELECTROCAUTERY CONTACT

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 2 of 2.



Abstract

Introduction

During revision surgery, the active electrode of an electrocautery device may get close to the implant, potentially provoking a flashover. Incidents have been reported, where in situ retained hip stems failed after isolated cup revision. Different sizes of discoloured areas, probably induced by electrocautery contact, were found at the starting point of the fracture. The effect of the flashover on the implant material is yet not fully understood. The aim of this study was to investigate the fatigue strength reduction of Ti-6Al-4V titanium alloy after electrocautery contact.

Material and Methods

16 titanium rods (Ti-6Al-4V, extra low interstitial elements, according to DIN 17851, ⊘ 5 mm, 120 mm length) were stress-relief annealed (normal atmosphere, holding temperature 622 °C, holding time 2 h) and cooled in air. An implant specific surface roughness was achieved by chemical and electrolytic polishing (Ra = 0.307, Rz = 1.910). Dry (n = 6) and wet (n = 6, 5 µl phosphate buffered saline) flashovers were applied with a hand-held electrode of a high-frequency generator (Aesculap AG, GN 640, monopolar cut mode, output power 300 W, modelled patient resistance 500 Ω). The size of the generated discoloured area on the rod's surface - representative for the heat affected zone (HAZ) - was determined using laser microscopy (VK-150x, Keyence, Japan). Rods without flashover (n = 4) served as control. The fatigue strength of the rods was determined under dynamic (10 Hz, load ratio R = 0.1), force-controlled four-point bending (FGB Steinbach GmbH, Germany) with swelling load (numerical bending stress 852 MPa with a bending moment of 17.8 Nm) until failure of the rods. The applied bending stress was estimated using a finite-element-model of a hip stem during stumbling. Metallurgical cuts were made to analyse the microstructure.

Results

The control rods failed at the pushers of the setup (median: 94,550, range: 194,000 cycles). The rods with flashover failed directly at the HAZ significantly earlier than the control rods (p = 0.018). The analysis of the microstructure showed a transformation of the equiaxed α+β microstructure to a bimodal state. The size of the HAZs were equal for the dry (median: 1.51 mm2, range: 5.68 mm2) and wet flashovers (median: 0.92 mm2, range: 2.50 mm2, p = 0.792). The cycles to failure were smaller for the dry flashover (median: 22,650 cycles, range: 5,700) than the wet flashover but not reaching statistical significance (median: 32,200, range: 57,900; p = 0.052). No correlation between the dimension of the HAZs and the cycles to failure was found (dry: r2 = 0.019, p = 0.8; wet: r2 = 0.015, p = 0.721).

Discussion

Flashovers induced by an electrocautery device reduce the fatigue strength of Ti-6Al-4V. Since no correlation between the size of the HAZs and the cycles to failure was found, every contact between electrocautery devices and metal implants should be avoided.

For any figures or tables, please contact authors directly.