Introduction. The management of young patients with painful medial compartment osteoarthritis remains controversial. Opening wedge medial high-tibial osteotomy using a locking plate has shown good results in selected patients. This cohort of patients has high physical demands and previous studies have warned against operating on patients with increased body mass index (BMI). Patients and Methods. Thirty five patients undergoing valgus high tibial osteotomy between Oct 2004 and Feb 2010. Surgical outcome was assessed using Oxford Knee score, pre- and post-operative pain scores, change in employment and patient satisfaction. Results. Mean age at the time of surgery was 41 (22 to 62), mean BMI was 30.9 (21 to 43) and mean Oxford score was 37/48 (16 to 48). Patients rated their overall satisfaction as 7.9/10. Three patients were lost to follow-up, two patients died of unrelated disease. Fifteen (50%) patients had heavy manual jobs and of these 12 (80%) returned to their previous employment post-operatively within 6 months. Seven patients had a BMI > 35 (Mean 39) with a mean weight of 126 Kg (105Kg to 144Kg). These patients had a mean Oxford Score of 42/48 and overall satisfaction of 90%. Pain improved from 8.4/10 pre-op to 1.5/10 post-op (P < 0.0001). None had further procedures. Conclusion. Opening wedge high-tibial osteotomy offers a successful alternative treatment of
Tibial component loosening is an important failure mode in unicompartmental knee arthroplasty (UKA) which may be due to the 6–8 mm of bone resection required or the limited surface area. To address component loosening and fixation, a new Early Intervention (EI) design is proposed which reverses the traditional material scheme between femoral and tibial components. That is, the EI design consists of a plastic inlay component for the distal femur and a thin metal plate for the proximal tibia. With this reversed materials scheme, the EI design requires minimal tibial bone resection compared to traditional UKA to preserve the dense and stiff bone in the proximal tibia. This study investigated, by means of finite element (FE) simulations, the potential advantages of a thin metal tibial component compared with traditional UKA tibial components, such as an all-plastic inlay or a metal-backed onlay. We hypothesized that an EI component would produce comparable stress, strain, and strain energy density characteristics to an intact knee and more favorable values than UKA components. Indeed, the finite element results showed that an EI design reduced stresses, strains and strain energy density in the underlying support bone compared to an all-plastic UKA component. Analyzed parameters were similar for an EI and a metal-backed onlay, but the EI component had the advantage of minimal resection of the stiffest bone.
The management of degenerative arthritis of the knee in the younger, active patient presents a challenge to the orthopaedic surgeon. Surgical treatment options include: high tibial osteotomy (HTO), unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA). The aim of this study was to examine the long-term survival of closing wedge HTO in a large series of patients up to 19 years after surgery. Four hundred and fifty-five consecutive patients underwent lateral closing wedge HTO for medial compartment osteoarthritis (MCOA) between 1990 and 2001. Between 2008-2009, patients were contacted via telephone. Assessment included: incidence of further surgery, current body mass index (BMI), Oxford Knee Score, and British Orthopaedic Association (BOA) Patient Satisfaction Scale. Failure was defined as the need for revision HTO or conversion to UKA or TKA. Survival analysis was completed using the Kaplan-Meier method.Introduction
Methods
Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA. In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients.Aims
Patients and Methods
Introduction. The pathogenesis of primary knee osteoarthritis is due to excess mechanical loading of the articular cartilage. Previous studies have assessed the impact of muscle forces on tibiofemoral kinematics and force distribution. A cadaveric study was performed to evaluate the effect of altering the moment arm of the iliotibial band (ITB) on knee biomechanics. Method. A robotic system consisting of a 6-DOF manipulator capable of measuring forces on the medial and lateral condyle of a cadaveric knee at various flexion angles and muscle forces was utilized [1]. The system measured the compartment forces at flexion angles between 0° and 30° under 3 simulated loading conditions (300N quadriceps, 100N hamstrings and: i. 0N ITB; ii. 50N ITB; iii. 100N ITB). Eight fresh frozen human cadaver knee specimens (4 males, 4 females); age range 36 – 50 years; weight range 49 – 90 kg; height range 154 – 190 cm were used in the study. The ITB and associated lateral soft tissue structures were laterally displaced from the lateral femoral condyle by fixing a metal implant (like in Figure 1) to the distal lateral femur. Mechanical loads on the medial and lateral compartments (with and without the implant) were measured using piezoelectric pressure sensors. Results. For each specimen, lateral displacement of the ITB due to the implant was measured (15 – 20 mm). The % average unloading of the medial compartment for all the specimens ranged from 34% – 65% (Figure 2). Also observed was a concomitant increase in lateral compartment load. Medial unloading was even observed with no ITB force (0N) which indicates a role for other lateral structures attached to the ITB in unloading the medial compartment [2]. In addition, under these non-weight bearing conditions, on average, there was an increase in valgus tibial angulation through the flexion range. Discussion. Increasing mechanical leverage of muscles across a joint is accomplished in nature through sesamoid bones (e.g., patella) which increase the muscle moment arm. By increasing the moment arm of the ITB and lateral soft tissue structures by lateralizing these structures, our model demonstrates a 34–65% unloading of the medial compartment. Studies of knee braces and weight loss have shown that reducing mechanical load on the medial condyle by even 10% provides clinical benefits in terms of reduced pain and improved function. Based on the results of this study, unloading the medial compartment by displacing the ITB laterally may be a means of treating
Young, active patients with end-stage
Objective. Open-wedge high tibial osteotomy (OWHTO) involves performing a corrective osteotomy of the proximal tibia and removing a wedge of bone to correct varus alignment. Although previous studies have investigated changes in leg length before and after OWHTO using X-rays, none has evaluated three-dimensional (3D) leg length changes after OWHTO. We therefore used 3D preoperative planning software to evaluate changes in leg length after OWHTO in three dimensions. Methods. The study subjects were 55 knees of 46 patients (10 men and 36 women of mean age 69.9 years) with
The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and minimally clinically important differences between the revision (M=61.1/100, SD=20.4) and primary groups (M=76.0/100, SD=18.9), (p < 0 .05). Mean two-year scores for revision patients with repair of the medial (M=59.4/100, SD=21.7) or lateral meniscus (M=59.4/100, SD=23.6), partial medial meniscectomy (M=59.7/100, SD=20), grade three or four osteoarthritis (M=55.9/100, SD=19.5), and
Purpose. The purpose was to compare the accuracy of the method using 3D printing model with the method using picture archiving and communication system (PACS) images in high tibial osteotomy (HTO). Materials and methods. This study analyzed 40 patients with varus deformity and
Soft tissue balance is important for good clinical outcome and good stability after TKA. Ligament balancer is one of the devices to measure the soft tissue balance. The objective of this study is to clarify the effect of the difference in the rotational position of the TKA balancer on medial and lateral soft tissue balance. Materials and Methods. This study included with 50 knees of the 43 patients (6 males, 37 females) who had undergone TKA with ADLER GENUS system from March 2015 to January 2017. The mean age was 71.1±8.1 years. All patients were diagnosed with
Introduction. We report a case which total knee arthroplasty (TKA) was able to be performed on schedule for the patient with occult fracture of proximal tibia which seemed to have occurred three months prior to the surgery, and has healed in short period of time by the use of Teriparatide. Case report. The patient is 84-year-old female, having right knee pain for past 7 years. Her knee pain increased by passive extension maneuver that was done by a bonesetter 3 months prior to the surgery. On her initial visit, the X-ray finding was severe
Introduction. In prosthetic knee surgery, the axis of the lower limb is often determined only by static radiographic analysis. However, it is relevant to determine if this axis varies during walking, as this may alter the stresses on the implants. The aim of this study was to determine whether pre-operative measurement of the mechanical femorotibial axis (mFTA) varies between static and dynamic analysis in isolated
Background. In measured resection (MR) technique it is sometimes not easy to equalize extension gap (EG) and flexion gap (FG) because the size of femoral component is generally determined only depending on the anteroposterior and mediolateral size of femoral condyle in MR technique. In order to equalize the EG and FG, femoral implant size should be determined so that the FG is similar to the EG. We developed the novel sizing technique of femoral component to equalize the EG and FG in MR technique. The purpose of this study was to examine the usefulness of this technique. Methods. Before surgery, the condylar twist angle: CTA (angle between the transepicondylar axis and the posterior condylar axis) was determined for individual knees by transepicondylar view (X ray) or CT. During surgery, after osteophyte was removed EG was made and measured. Knee was flexed in 90° and the specially made tensor which upper paddle has the medial inclination angle (same as the CTA) was inserted to FG before posterior femoral osteotomy. Then, the appropriate traction force was applied to FG. Under this condition, the correct rotational alignment of femur relative to tibia was obtained, and then, the size of femoral component could be determined so that the FG was similar to the EG by measuring the distance between tibial cut surface and posterior cut level of the respective size of femoral conponent. 23 knees that undergone TKA for end stage
«Purpose». High tibial osteotomy (HTO) is a useful treatment option for osteoarthritis of the knee. Closing-wedge HTO (CW-HTO) had been mostly performed previously, but the difficulties of surgical procedure when total knee arthroplasty (TKA) conversion is needed are sometimes pointed out because of the severe deformity in proximal tibia. Recently, opening-wedge HTO (OW-HTO) is becoming more popular, but the difference of the two surgical techniques about the influence on proximal tibia deformity and difficulties in TKA conversion are not fully understood. The purpose of this study was to compare the influence of two surgical techniques with CW-HTO and OW-HTO on the tibial bone deformity using computer simulation and to assess the difficulties when TKA conversion should be required in the future. «Methods». In forty knees with
Introduction. We have previously reported that patients who demonstrated medial pivot kinematics pattern after total knee arthroplasty (TKA) had better clinical results than that of non-medial pivot pattern. However, it is unclear how preoperative kinematics pattern affects postoperative knee kinematics. The aim of this study was to evaluate the relationship between preoperative and postoperative knee kinematics pattern in TKA. Materials and Methods. The present study consists of 38 patients with
INTRODUCTION. The major loss of articular cartilage in
Introduction. Total knee arthroplasty (TKA) is a well-established procedure associated with excellent clinical results. We have previously reported that intraoperative knee kinematics correlate with the clinical outcome in mobile bearing TKA. In addition, the intraoperative knee kinematics pattern does not correlate with the degree of preoperative knee deformity in mobile bearing TKA. However, the relationship among preoperative knee deformity, intraoperative kinematics and clinical outcome in fixed bearing TKA has been unknown. The purpose of this study is to compare the relationship among preoperative knee deformity, knee kinematics after fixed bearing TKA and the clinical outcome including the subjective outcomes evaluated by the new knee society score (KSS). Materials and Methods. A cross-sectional survey of thirty-five consecutive
Total Knee Replacement (TKR) has been proven to be an effective procedure not only to eliminate pain but also to achieve better knee function. Recent rehabilitation is basically focused on achieving better ROM and muscle strength. However, improvements of balancing or walking ability in detail have not been sufficiently elucidated yet. Methods. 91 consecutive knees of 70 patients, with
Patients who have undergone Total Knee Replacement (TKR) improve their knee functions with time dependent recovery. However, the speed and degree of recovery widely varies from person to person. Practitioners generally find that postoperative satisfaction after TKR is closely related to the degree of preoperative severity in deformity. We focused on preoperative FTA to determine how the degree of deformity affects postoperative improvements after TKR. Methods:. 44 consecutive knees of 44 patients with
Introduction. Total knee arthroplasty (TKA) designs evolve as evidence accumulates on natural and prosthetic knee function. TKA designs based upon a medially conforming tibiofemoral articulation seek to reproduce essential aspects of normal knee stability and have enjoyed good clinical success and high patient satisfaction for over two decades. Fluoroscopic kinematic studies on several medially conforming knee designs show extremely stable knee function, but very small ranges of tibial axial rotation compared to healthy knees. The GMK Sphere TKA is a recent evolution in medially-conforming TKA designs that adopts a sagittally unconstrained lateral tibiofemoral articulation to allow more natural tibial rotation. This study was conducted to quantify motions in knees with this prosthesis to address two questions:. Does the medially conforming GMK Sphere design provide an AP-stable articulation that provides for tibiofemoral translations that are comparable to, but not larger than, translations measured in natural knees?. Does the medially conforming GMK Sphere design provide sufficient rotatory laxity to allow tibiofemoral rotations comparable to, but not larger than, rotations measured in natural knees?. Materials and Methods. Fifteen patients (9 females), mean age 65 years and mean BMI of 30 ±3, consented to participate. Sixteen knees received the GMK Sphere TKA. Mean Oxford Knee Score (OKS) improved significantly from 19±7 to 40±3 six months post surgery (P< 0.0001). On the day of the study, the mean OKS, Knee Society Score, EQ5D and Heath status scores were 40, 87, 0.83 and 85 respectively. Mean ROM from active maximum extension till maximum supine flexion was 108°±8°. Motions in 16 knees were observed using pulsed-fluoroscopy during a range of activities. Subjects were observed in maximum flexion kneeling and lunging positions, and in stepping up/down on a 22cm step. Model-image registration methods were used to quantify three-dimensional knee motions from digitized fluoroscopic images. Results. Tibial internal rotation averaged 8° during lunge and kneeling activities. During lunging, the medial and lateral condyles were an average of 2mm and 8mm posterior to the tibial sulcus, respectively, and 2mm and 9mm posterior to the tibial sulcus during kneeling. During the stair-stepping activity, the medial condyle did not translate significantly, while the lateral condyle moved 5mm posteriorly with flexion, accompanying 5° tibial internal rotation. Discussion. The GMK Sphere TKA was designed to provide intrinsic stability through a medially conforming articulation, and provide for more natural tibial rotation with an unconstrained lateral articulation. Fluoroscopic observation of these knees during lunge, kneel and stair-stepping activities showed a stable medial articulation with little translation, and a lateral articulation translating in direct relation to tibial rotation. Tibial rotation during kneeling (8° average) was approximately twice that observed in knees with an earlier medially conforming TKA design (Moonot et al., Knee Surg Sports Traumatol Arthrosc, 2009) and similar to that observed in natural knees with