Advertisement for orthosearch.org.uk
Results 1 - 20 of 578
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 42 - 42
1 Nov 2021
Espregueira-Mendes J
Full Access

Rotational laxity increases the risk of anterior cruciate ligament (ACL) injuries and residual rotational laxity can result in inferior surgical outcomes and risk of retears. The dynamic rotatory knee stability can be assessed through manual examination, but it is limited to the surgeon's experience and it provides inaccurate measurements, highlighting the need for objective measurement of knee rotational laxity. The objective measurement of knee laxity can help to better identify patients that may benefit from conservative treatment or those that require surgical treatment with or without concomitant extra-articular procedures. We rely in Porto Knee Testing Device (PKTD®) to accurately measure sagittal and rotatory laxity of the knee, either individually or in a combined fashion. The PKTD® is safe and can be used in combination with CT or MRI, which allows to assess both the “anatomy” and the “function” in the same examination. By this way, we may have a total ACL rupture and a stable knee not requiring surgery or, on the other hand, the same injury scenario but with an unstable knee that requires surgical intervention (with or without lateral extra-articular tenodesis). In cases of partial ACL tears, it may be possible to identify some ligamentous fibers that remain functional, where the conservative treatment or augmentation techniques can provide satisfactory results. It can also identify when a posteromedial or posterolateral instability is associated. The PKTD® can also be used to follow-up the laxity results of conservative and surgical procedures and contribute to the decision-making of return to sports


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 113 - 113
2 Jan 2024
Ghaffari A Rasmussen J Kold S Rahbek O
Full Access

Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality. This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m. 2. (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the random effect variables. Intraclass correlation coefficients (ICCs) were calculated for between-day, between-bout, and between-step comparisons. The results showed that the ICCs for the between-day, between-bout, and between-step comparisons were 0.73, 0.82, 0.99 for the vertical axis; 0.64, 0.75, 0.99 for the anteroposterior axis; and 0.55, 0.96, 0.97 for the mediolateral axis. For the signal harmonics, the respective ICCs were 0.98, 0.98, 0.99 for the vertical axis; 0.54, 0.93, 0.98 for the anteroposterior axis; and 0.69, 0.78, 0.95 for the mediolateral axis. Overall, this study demonstrated that accelerations recorded continuously for multiple days in a free-living environment exhibit high variability, mainly between days, and some variability arising from differences between walking bouts during different times within days. However, reliable and repeatable gait measurements can be obtained by identifying and quantifying the sources of variability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 40 - 40
17 Nov 2023
Kuder I Jones G Rock M van Arkel R
Full Access

Abstract. Objectives. Ultrasound speckle tracking is a safe and non-invasive diagnostic tool to measure soft tissue deformation and strain. In orthopaedics, it could have broad application to measure how injury or surgery affects muscle, tendon or ligament biomechanics. However, its application requires custom tuning of the speckle-tracking algorithm then validation against gold-standard reference data. Implementing an experiment to acquire these data takes months and is expensive, and therefore prohibits use for new applications. Here, we present an alternative optimisation approach that automatically finds suitable machine and algorithmic settings without requiring gold-standard reference data. Methods. The optimisation routine consisted of two steps. First, convergence of the displacement field was tested to exclude the settings that would not track the underlying tissue motion (e.g. frame rates that were too low). Second, repeatability was maximised through a surrogate optimisation scheme. All settings that could influence the strain calculation were included, ranging from acquisition settings to post-processing smoothing and filtering settings, totalling >1,000,000 combinations of settings. The optimisation criterion minimised the normalised standard deviation between strain maps of repeat measures. The optimisation approach was validated for the medial collateral ligament (MCL) with quasi-static testing on porcine joints (n=3), and dynamic testing on a cadaveric human knee (n=1, female, aged 49). Porcine joints were fully dissected except for the MCL and loaded in a material-testing machine (0 to 3% strain at 0.2 Hz), which was captured using both ultrasound (>14 repeats per specimen) and optical digital image correlation (DIC). For the human cadaveric knee (undissected), 3 repeat ultrasound acquisitions were taken at 18 different anterior/posterior positions over the MCL while the knee was extended/flexed between 0° and 90° in a knee extension rig. Simultaneous optical tracking recorded the position of the ultrasound transducer, knee kinematics and the MCL attachments (which were digitised under direct visualisation post testing). Half of the data collected was used for optimisation of the speckle tracking algorithms for the porcine and human MCLs separately, with the remaining unseen data used as a validation test set. Results. For the porcine MCLs, ultrasound strains closely matched DIC strains (R. 2. > 0.98, RMSE < 0.59%) (Figure 1A). For the human MCL (Figure 1B), ultrasound strains matched the strains estimated from the optically tracked displacements of the MCL attachments. Furthermore, strains developed during flexion were highly correlated with AP position (R = 0.94) with strains decreasing the further posterior the transducer was on the ligament. This is in line with previously reported length change values for the posterior, intermediate and anterior bundles of the MCL. Conclusions. Ultrasound speckle tracking algorithms can be adapted for new applications without ground-truth data by using an optimisation approach that verifies displacement field convergence then minimises variance between repeat measurements. This optimisation routine was insensitive to anatomical variation and loading conditions, working for both porcine and human MCLs, and for quasi-static and dynamic loading. This will facilitate research into changes in musculoskeletal tissue motion due to abnormalities or pathologies. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 53 - 53
1 Dec 2020
Çil ET Gökçek G Şaylı U Şerif T Subaşı F
Full Access

Foot pain and related problems are quite common in the community. It is reported that 24% of individuals older than 45 experienced foot pain. Also, it is stated that at least two thirds of individuals experiences moderate physical disability due to foot problems. In the absence of evaluation of risk factors such as limited ankle dorsiflexion in the early period of the diseases (Plantar fasciitis, Achilles Tendinopathy e.g.) and the lack of mobile systems with portable remote access, foot pain becomes refractory/chronic foot pain, secondary pathologies and ends with workload of 1., 2. and 3rd level healthcare services. In the literature, manuel and dijital methods have been used to analyze the ankle range of motion (ROM). These studies are generally based on placing protractors on the image and / or angle detection from inclination measurement by using the gyroscope sensor of the mobile device. Some of these applications are effective and they are designed to be suitable for measuring in a clinical setting by a physician or physiotherapist. To the best of our knowledge, there is no system developed to measure real-time ankle ROM remotely with collaboration of the patients. In this research, we proposed to develop an ankle ROM analyze system with smart phone application that can be used comfortably by subjects. We present a case of a 22-year-old male with a symptomatic pes planus. The mobile application, which was used for data collection, was designed and implemented for Android devices. Initially, before the mobile application home page is opened, a consent page was submitted to the acceptance of individual within the scope of Law (KVKK) data privacy. Then, the participant was asked to state his sociodemographic characteristics [age, gender, height, weight] and dominant side. No history of foot-ankle injury, trauma, and surgery was recorded. Activity pain of the foot was 6 according to visual anolog scale (VAS) in the mobile application. His ankle dorsiflexion was 15 ° by manuel goniometer. Besides, server was responsible for storing the collected data and ROM measurement. ROM was calculated by processing the foot video which was sent through the mobile application. During the processing phase, a segmentation model was used which was trained with image process and deep learning methods. With the developed system, we obtained the manual goniometric measurement result with 2 degrees deviation. As the application is calibrated, it is expected to approach the actual measurement of ROM. We can conclude that mobile app-goniometer result in dorsiflexion measurement is a novel promising evaluation method for ankle ROM. it will be easy and practical to detect and monitor risk factor of the diseases, decrease medical costs, provide health services in rural areas, and contribution to life quality and to reduce the workload on physicians and physiotherapist


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 112 - 112
1 Apr 2017
Herregodts S De Baets P Victor J Verstraete M
Full Access

Background. Biomechanical joint contact pressure distribution measurements have proven to be a very valuable tool in orthopaedic research to investigate the influence of surgical techniques such as total knee arthroplasty (TKA) on the human knee joint. Quantification of the in vitro tibiofemoral and patellofemoral contact pressure distribution before and after the intervention are an important measure to evaluate the impact of the surgery. The K scan pressure sensor from Tekscan (South Boston USA) is a commonly reported device for these in vitro pressure measurements. Despite the large interest in the sensor, the effective measurement accuracy for in vitro biomechanical joint contact measurement still remains a big question and therefore the reliability of these measurements should be questioned. Methods. Reliable contact pressure measurements can only be done if the sensor behaviour is fully understood. Therefore, a tailored multi-axial testing machine has been designed to profoundly investigate and characterise the sensor behaviour. This test setup is unique through its ability to apply a predefined tangential force or sliding velocity to the sensor's interface next to a normal force. Dynamic effects occurring in knee joint motion can thus be simulated while evaluating the effect on the contact pressure measurements. Results. The change in contact friction coefficient by insertion of the sensor in the joint is quantified. Different interface conditions (dry, lubricated with PTFE spray, lubricated with surgical lubricant) have been evaluated to obtain the best sliding conditions and to minimise the undesired sensor accuracy deteriorating effects. Conclusion. An optimal calibration procedure is put forward and side-effects that deteriorate the measurement accuracy are quantified. The provided knowledge facilitates orthopaedic biomechanics researchers to optimally perform joint contact measurements and to estimate the effective measurement accuracy. In addition, the presented rig provides the opportunity to study the inherent knee kinematics and prosthesis shape optimisation through the inherent degrees of freedom in the rig


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 76 - 76
1 Jan 2017
Marter A Pierron F Dickinson A Browne M
Full Access

Polymer foams have been used extensively in the testing and development of orthopaedic devices and for verification of computational models. Their use is often preferred over cadaver and animal models due to being relatively inexpensive and their consistent material properties. Successful validation of such models requires accurate material/mechanical data. The assumed range of compressive moduli, provided in the sawbones technical sheet, is 16 MPa to 1.15 GPa depending on the density of foam. In this investigation, we apply two non-contact measurement techniques (digital volume correlation (DVC) and optical surface extensometry) to assess the validity of these reported values. It is thought that such non-contact methods remove mechanical extensometer errors (slippage, misalignment) and restrict the effect of test-machine end-artifacts (friction, non-uniform loading, platen flexibility). This is because measurement is taken directly from the sample, and hence material property assessment should be more accurate. Use of DVC is advantageous as full field strain measurement is possible, however test time and cost is significantly higher than extensometry. Hence, the study also sought to assess the viability of optical extensometry for characterising porous materials. Testing was conducted on five 20 mm cubic samples of 0.32g/cc (20 pcf) solid rigid polyurethane foam (SAWBONES. TM. ). The strain behaviour was characterised by incremental loading via an in situ loading rig. Loading was performed in 0.1 mm increments for 8 load steps with scans between loading steps. Full field strain measurement was performed on one sample by micro focus tomography (muvis centre, Southampton) and subsequent DVC (DaVis, Lavision). Calculation of Young's modulus and Poisson's ratio was then preformed through use of the virtual fields method. These results were subsequently corroborated by use of optical extensometry (MatchID). To account for heterogeneities, axial strain measurements were averaged from six points on the front and rear surfaces. A computationally derived correction factor was then applied to account for through volume strain variations. In each test compressive displacement was applied to 900N (∼2MPa) to remain within the linear elastic region. Significant variability of individual strain measurements were observed from extensometry measurements on the same sample, indicating non-uniform loading did occur in all samples. However by averaging across multiple points linear loading profiles were identified. For all non-contact methods the calculated elastic moduli were found to range between 331–428 MPa whilst the approximated modulus based on cross head displacement was ∼210 MPa. The optical-extensometry gave a considerably higher modulus (p = 0.047) than the DVC results as only surface measurements were made. However, following computational based correction values converged within 6% of one another. Both the DVC and point-tracking results (p = 0.001) indicated substantially higher compressive modulus (137%) than the manufacturer provided properties. This study demonstrates that methods of measuring displacement data on of cellular foams must be carefully considered, as artefacts can lead to significant errors of up to 137%, and such errors may falsely influence the design and validation of tested devices


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 28 - 28
11 Apr 2023
Wither C Lawton J Clarke D Holmes E Gale L
Full Access

Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality.

Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment.

The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65.

The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 35 - 35
1 Jun 2012
Spencer S Clarke J Deakin A
Full Access

Range of motion (ROM) is a well recognised outcome measure following TKA and combines both knee flexion and extension. In contrast to achieved flexion, fewer studies have recognised the importance of fixed flexion deformity (FFD). A post-operative FFD can adversely affect pain and functional knee scores and so its detection is important. The aim of this study was to investigate the accuracy of standard clinical ROM measurement techniques following TKA and determine their reliability for recognising FFD. Thirty patients six weeks post-TKA had knee ROM measurements performed with an infrared (IR) tracking system of ±1 accuracy. The patients were also assessed independently by experienced arthroplasty practitioners using a standardised goniometric measurement technique. For goniometric clinically-measured flexion (Clin. flex. ) and extension (Clin. ext. ) linear models were generated using IR-measured flexion and extension (IR. flex. and IR. ext. ), BMI and gender as covariables. Data for extension was categorised as FFD present or absent based on Ritter's criteria and agreement was assessed using Kappa. For both models neither BMI nor gender were significant variables. Models were Clin. flex. = 0.54 + 0.66∗IR. flex. (r. 2. adj. =0.521) and Clin. ext. = 0.23 + 0.50∗IR. ext. (r. 2. adj. =0.247), showing that for every 10° increase in flexion, clinical measurement only increased by 7° and for every 10° increase in FFD angle, clinical measurement only increased by 5°. In identifying FFD there was moderate agreement between the two measurements (κ=0.44) with disagreement for nine patients all being patients with FFD that were not identified clinically. For both flexion and extension there was a greater tendency for the goniometric clinical measurements to underestimate the actual angle. In the context of TKA outcome for maximum flexion this may be preferable to overestimating. In contrast, underestimating the degree of flexion when the knee is in the extended position is not desirable as it will potentially underreport the frequency and magnitude of FFD


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 87 - 87
1 Apr 2017
Simpson A Dattani R Sankey R
Full Access

Background. Radiological and clinical results of total shoulder arthroplasty are dependent upon ability to accurately measure and correct glenoid version. There are a variety of imaging modalities and computer-assisted reconstruction programmes that are employed with varying degrees of success. We have compared three freely available modalities: unformatted 2D CT; formatted 2D CT; and 3D CT reconstructions. Methods. A retrospective analysis of 20 shoulder CT scans was performed. Glenoid version was measured at the estimated mid-point of the glenoid from unformatted 2D CT scans (Scapula body method) and again following formatting of 2D CT scans in the plane of the scapula (Friedman method). 3D scapula reconstructions were also performed by downloading CT DICOM images to OSIRIX 6 and plotting ROI points on Friedman's axis to most accurately define glenoid version. Both measurements taken from 2D CT were compared to those from 3D CT. Eleven CT scans were of male patients, 9 female. Mean age was 55.2 years (Range: 23–77 years). Fourteen scans were performed for trauma, 6 for arthroplasty. Twelve scans were of the left shoulder. Results. Mean glenoid version as measured on: unformatted 2D CT was −4.51 degrees (−29.67 – 7.22 degrees); formatted 2D CT was −2.04 degrees (−36.96 – 9.72 degrees); and on 3D reconstructions was −3.01 degrees (−32.57 – 14.33 degrees). Sixty percent of measurements taken on formatted 2D CT were within 3 degrees of those taken on 3D reconstructions, with 85% within 5 degrees. This proportion fell to 30% and 50% respectively on unformatted 2D CT. Discussion. In this small study measurements of glenoid version taken on formatted 2D CT demonstrated greater accuracy than unformatted 2D CT when comparing to 3D reconstruction measurements as the gold standard. Although we demonstrated no significant statistical difference between measurements in this pilot study we believe significance will be obtained as we increase our sample size


Bone & Joint Research
Vol. 4, Issue 5 | Pages 78 - 83
1 May 2015
Martinkevich P Rahbek O Møller-Madsen B Søballe K Stilling M

Objectives. Lengthening osteotomies of the calcaneus in children are in general grafted with bone from the iliac crest. Artificial bone grafts have been introduced, however, their structural and clinical durability has not been documented. Radiostereometric analysis (RSA) is a very accurate and precise method for measurements of rigid body movements including the evaluation of joint implant and fracture stability, however, RSA has not previously been used in clinical studies of calcaneal osteotomies. We assessed the precision of RSA as a measurement tool in a lateral calcaneal lengthening osteotomy (LCLO). Methods. LCLO was performed in six fixed adult cadaver feet. Tantalum markers were inserted on each side of the osteotomy and in the cuboideum. Lengthening was done with a plexiglas wedge. A total of 24 radiological double examinations were obtained. Two feet were excluded due to loose and poorly dispersed markers. Precision was assessed as systematic bias and 95% repeatability limits. Results. Systematic bias was generally below 0.10 mm for translations. Precision of migration measurements was below 0.2 mm for translations in the osteotomy. Conclusion. RSA is a precise tool for the evaluation of stability in LCLO. Cite this article: Bone Joint Res 2015;4:78–83


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 44 - 44
1 Mar 2021
Clark J Tavana S Jeffers J Hansen U
Full Access

Abstract

OBJECTIVES

An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive visualisation of three-dimensional (3D) strain fields in human articular cartilage.

METHODS

Human articular cartilage specimens were harvested from the knee (n=4 specimens from 2 doners), mounted into a loading device and imaged in the loaded and unloaded state using a micro-CT scanner. Strain was calculated throughout the volume of the cartilage using the CT image data.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 767 - 771
1 Jul 2001
Biedermann R Stöckl B Krismer M Mayrhofer P Ornstein E Franzén H

Our aim was to determine whether tantalum markers improved the accuracy and/or precision of methods for the measurement of migration in total hip replacement based on conventional measurements without mathematical correction of the data, and with Ein Bild Roentgen Analyse – Femoral Component Analysis (EBRA-FCA) which allows a computerised correction. Three observers independently analysed 13 series of roentgen-stereophotogrammetric-analysis (RSA)-compatible radiographs (88). Data were obtained from conventional measurements, EBRA-FCA and the RSA method and all the results were compared with the RSA data. Radiological evaluation was also used to quantify in how many radiographs the intraosseous position of the bone markers had been simulated. The results showed that tantalum markers improve reliability whereas they do not affect accuracy for conventional measurements and for EBRA-FCA. Because of the danger of third-body wear their implantation should be avoided unless they are an integral part of the method


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 71 - 71
1 Aug 2012
Thiagarajah S MacInnes S Yang L Wilkinson J
Full Access

Introduction. Subtle variations in hip morphology associate with risk of hip osteoarthritis (OA). However, validated accurate methods to quantitate hip morphology using plain radiography are lacking. We have developed a Matlab-based software-tool (SHIPs) that measures 19 OA-associated morphological-parameters of the hip using a PACS pelvic radiograph. In this study we evaluated the accuracy and repeatability of the method. Methods. Software accuracy was assessed by firstly measuring the linear ratio of 2 fixed distances and several angles against a gold-standard test radiograph, and secondly by repeated measurements on a simulated AP radiograph of the pelvis (reformatted from CT-data) that was digitally rotated about 3-axes to determine the error associated with pelvic mal-positioning. Repeatability was assessed using 30-AP Pelvic radiographs analysed twice (intra-observer), by 2 readers (inter-observer), and finally, using 2 pelvic radiographs taken in 23 subjects (n=46 radiographs) taken same day after re-positioning (short-term clinical-practice variability), and was expressed as coefficient of variation (CV%). Results. Software accuracy was 0.1% for linear measurements, and 0.2, 0.4, and 0.1 degrees, for angular measurements of 30, 60, and 90 degrees, respectively. Anterior rotation of the pelvis in the sagittal plane beyond 10 degrees produced a decrease in acetabular-tilt (-11 degrees at 20 degrees rotation) and acetabular-index-of-depth-to-width-ratio (-9.3% at 20 degrees rotation). Conversely, femoral-head-to-neck-ratio increased with both anterior and transverse rotation (+9% to +14% at 20 degrees rotation). The intra-observer CV was between 0.3-6.3%, and inter-observer CV was between 0.7-14.9% for all measurements with the exception of the measurement of horizontal-toit-externa (HTE) that had intra and inter-observer CVs of 33.4 and 29.1%, respectively. Short-term clinical repeatability was between 0.4-8.5%, with the exception of HTE that was 20.7%). Discussion. This software showed good accuracy and precision for the measurement of OA-associated hip morphological-parameters from plain radiographs of the pelvis, and may be useful in clinical research studies quantitating the relationship of these parameters to the development of hip OA. The method is, however, sensitive to large variations in pelvic positioning and use of the HTE measurement is associated with poor repeatability that is likely due to poor definition of the bony landmarks used for this parameter


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 614 - 618
1 May 2002
Grob KR Kuster MS Higgins SA Lloyd DG Yata H

Current methods of measurement of proprioceptive function depend on the ability to detect passive movement (kinaesthesia) or the awareness of joint position (joint position sense, JPS). However, reports of proprioceptive function in healthy and pathological joints are quite variable, which may be due to the different methods used. We have compared the validity of several frequently used methods to quantify proprioception. Thirty healthy subjects aged between 24 and 72 years underwent five established tests of proprioception. Two tests were used for the measurement of kinaesthesia (KT1 and KT2). Three tests were used for the measurement of JPS, a passive reproduction test (JPS1), a relative reproduction test (JPS2) and a visual estimation test (JPS3). There was no correlation between the tests for kinaesthesia and JPS or between the different JPS tests. There was, however, a significant correlation between the tests for kinaesthesia (r = 0.86). We conclude therefore that a subject with a given result in one test will not automatically obtain a similar result in another test for proprioception. Since they describe different functional proprioceptive attributes, proprioceptive ability cannot be inferred from independent tests of either kinaesthesia or JPS


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 24 - 24
1 Mar 2021
Preutenborbeck M Brown C Tarsuslugil S
Full Access

Abstract

OBJECTIVES

Hip dislocations remain one of the most common complications of total-hip-arthroplasty (Zahar et al.,2013). There is contradicting evidence whether the surgical approach affects dislocation rates (Sheth et al., 2015; Maratt, 2018). The aim of this study was to develop instrumentation to measure hip forces during simulated range-of-motion tests where the hip was forced to dislocate in cadaveric specimen.

METHODS

A total-hip-replacement was completed on both hips of a single cadaveric specimen by a trained orthopaedic surgeon during a lab initiated by DePuy. A direct-anterior surgical approach was performed on the right leg and a posterior approach was performed on the left. Before final implantation of the femoral component, a trial reduction with a femoral neck trial was performed. The neck trial was modified with strain gauges placed around the shaft which were designed to measure resultant hip forces throughout the range-of-motion assessment. A force-calibration was performed using a calibration-block to convert strain to force values.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 17 - 17
1 Aug 2012
Dheerendra S Khan W Smitham P Goddard N
Full Access

Background & Objectives. Sensory and motor manifestations in carpal tunnel syndrome (CTS) are well documented, whereas the associated autonomic dysfunction is often overlooked. The aim of this study is to demonstrate that autonomic dysfunction of the CTS hands can be quantified by measuring skin capacitance. Methods. Patients with clinical and electrophysiological signs of idiopathic carpal tunnel syndrome meeting the inclusion criteria were recruited. The patients were also scored based on the Brigham carpal tunnel severity score. Skin capacitance was measured using Corneometer CM825 (C&K Electronic, GmbH). The measurements were taken from the palmar aspect of distal phalanx of the index and little finger of the affected hand. Normal healthy patients with no signs and symptoms of carpal tunnel syndrome were recruited as controls and skin capacitance was measured in a similar fashion as the CTS group. Results. The CTS group consisted of 25 patients (18 female & 7 male) and 35 hands with an average age of 59.2 years (33-83 years). The mean symptom severity score was 2.80 (1.27-4.18; SD 0.82) and functional status score was 2.53 (1-4.26; SD 1.08). The mean ratio of skin hydration between the index and little finger was 0.85 (0.6-1.25; SD 0.155). Using the paired t-test to determine paired differences between index and little finger measurements, the mean difference was 12.6 (p<0.001). The control group consisted of 15 people (9 female and 6 male) and 30 hands. The average age was 47.3 years. The mean ratio of skin hydration between the index and little finger was 0.97 (0.77-1.42 SD 0.105). Using the paired t-test to determine paired differences between index and little finger measurements, the mean difference was 1.31 (p=0.317). The difference in skin hydration between the index and little finger was directly compared between the controls and CTS group, this difference was statistically significant, p=0.002. Conclusion. A simple method to determine dysautonomia, using Corneometer CM825, by the clinician has been demonstrated. Measurement of skin capacitance will reduce the dependence on electrophysiological studies, thus reducing the time for arriving at a diagnosis, improved patient satisfaction and cost-effectiveness


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 110 - 110
1 Jan 2017
Lin C Lu T Zhang S Hsu C Frahm J Shih T
Full Access

Non-invasive, in vivo measurement of the three-dimensional (3-D) motion of the tibiofemoral joint is essential for the study of the biomechanics and functional assessment of the knee. Real-time magnetic resonance imaging (MRI) techniques enable the measurement of dynamic motions of the knee with satisfactory image quality and free of radiation exposures but are limited to planar motions in selected slice(s). The aims of the current study were to propose a slice-to-volume registration (SVR) method in conjunction with dual-slice, real-time MRI for measuring 3-D tibiofemoral motion; and to evaluate its repeatability during passive knee flexion. Eight healthy young adults participated in the current study, giving informed written consent as approved by the Institutional Research Board. A 3-T MRI system (Verio, Siemens, Erlangen, Germany) incorporated with a neck matrix coil was used to collect the MRI data. A 3-D scanning using the VIBE sequence was used to collect the volumetric data of the knee at fully extended position (TR = 4.64 ms, TE = 2.3 ms, flip angle = 15°, in-plane resolution = 0.39 × 0.39 mm. 2. and slice thickness = 0.8 mm). A real-time MRI using the refocused radial FLASH sequence (TR = 4.3 ms, TE = 2.3 ms, flip angle = 20°, in-plane resolution = 1.0 × 1.0 mm. 2. , slice thickness = 6 mm) was used to acquire a pair of image slices of the knee at a frame rate of 3 fps during passive flexion. The volumetric MRI data sets were segmented for the femur and tibia/fibula to isolate the sub-volumes containing bone segments. A slice-to-volume registration method was then performed to determine the 3-D poses of the bones based on the spatial matching between sub-volume of the bones and the real-time image slices. The bone poses for all frames were used to calculate the rigid-body kinematics of the tibiofemoral joint in terms of the flexion/extension (FE), internal/external rotation (IR/ER), abduction/adduction (Abd/Add) and joint center translations along three anatomical axis of the tibia. The procedures were carried out five times for repeatability analysis. The standard deviation (SD) of the rigid-body kinematics for each frame from the five trials were calculated and then averaged across all frames to give quantitative measures of the repeatability of the kinematic variables. The repeatability analysis showed that the mean±SD of the averaged SD in FE, Abd/Add and IR/ER components across all subjects were 0.25±0.09, 0.46±0.13 and 0.77±0.16 degrees, respectively. The corresponding values for the joint translations in anterior/posterior, proximal/distal and medial/lateral directions were 0.21±0.04, 0.11±0.03 and 0.43±0.09 mm. An SVR method in conjunction with dual-slice real-time MRI has been successfully developed and its repeatability in measuring 3-D motion of the tibiofemoral joint evaluated. The results show that the proposed method is capable of providing rigid-body kinematics with sub-millimeter and sub-degree precision (repeatability). The proposed SVR method using real-time MRI will be a valuable tool for non-invasive, functional assessment of the knee without involving ionizing radiation, and may be further developed for joint stability assessment


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1065 - 1071
1 Sep 2000
Martini F Lebherz C Mayer F Leichtle U Kremling E Sell S

Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative BMD between osteoarthritic and healthy hips. The results showed a preoperative BMD of the affected hip which was lower by a mean of 4% and by a maximum of 9% compared with the opposite side. In addition, measurements were made in the operated hip before and at ten days after operation to determine the effect of the implantation of an uncemented custom-made femoral stem. The mean increase in the BMD was 8% and the maximum was 24%. Previous retrospective studies have reported a marked loss of BMD on the operated side. The precision of double measurements using a special foot jig showed a modified coefficient of variation of 0.6% for the non-operated side in 15 patients and of 0.6% for the operated femur in 20 patients. The effect of rotation on the precision of the measurements after implantation of an uncemented femoral stem was determined in ten explanted femora and for the operated side in ten patients at 10° rotation and in 20 patients at 30° rotation. Rotation within 30° influenced the precision in studies in vivo and in vitro by a mean of 3% and in single cases in up to 60%. Precise prediction of the degree of loss of BMD is thus only possible in prospective cross-sectional measurements, since the effect of the difference in preoperative BMD, as well as the apparent increase in BMD after implantation of an uncemented stem, is not known from retrospective studies. The DEXA method is a reliable procedure for determining periprosthetic BMD when positioning and rotation are strictly controlled


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 169 - 172
1 Jan 1998
Jorn LP Fridén T Ryd L Lindstrand A

We obtained simultaneous measurements of sagittal knee laxity in 12 consecutive patients after reconstruction of the anterior cruciate ligament (ACL), using the Stryker laxity tester and radiostereometric analysis (RSA). The mean anteroposterior (AP) displacement when a 90 N load was applied in both directions was 5.3 ± 2.7 mm with RSA and 9.8 ± 1.6 mm with the external device (p < 0.001). The corresponding measurements at a load of 180 N were 5.7 ± 2.4 mm and 13.8 ± 3.7 mm, respectively (p < 0.001). More than 50% of the sagittal knee movement, as measured by the external device at a load of 180 N, was not true femorotibial displacement of the joint but was due to soft-tissue deformation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 120 - 120
1 Jan 2017
Palanca M Marco M Ozóg K Cristofolini L
Full Access

The causes of spine disease are often biomechanical ones (e.g. disc degeneration, vertebral fracture). Currently, a deep investigation of the spine biomechanics is missing, due to the high complexity of the spine system (Fung 1980, Brandolini, Cristofolini et al. 2014): vertebrae and intervertebral discs. Recently, the Digital Image Correlation allowed measuring in vitrothe displacement and strain on the surface of soft and hard tissues, upon a specific non-invasive preparation of their surface with a speckle pattern (Palanca, Tozzi et al. 2016). The aim of this explorative work was to evaluate the deformation on spine segments, being able to distinguish between hard and soft tissue in the elastic regime and up to fracture. Segment of four vertebrae were extracted from porcine spines. All ligaments and muscles were removed, without damaging the spine segment (vertebrae and intervertebral discs). A suitable non-conventional white-on-black speckle pattern was prepared on the surface with airbrush airgun to track the movements of the specimen with DIC (Lionello, Sirieix et al. 2014). The endplates of the extreme vertebrae were potted in poly-methyl-methacrylate. The spine segments were tested in pure axial loading with cycles of increasing magnitude, up to fialure. A commercial 3D-DIC (Dantec Dynamics, Denmark) was used. In the present configuration, it allowed a resolution of 30 micrometers. It was used to measure the displacements and strains in a full-field and contactless way on the frontal surface of the spine segments. DIC allowed measuring with success the displacement and strain during the entire test, in the elastic regime and up to failure. The displacements and strains could be measured on the entire specimen, both in the vertebrae (hard tissue) and in the intervertebral discs (soft tissue). The axial strain evaluated prior to failure was close to 10’000 microstrain on the vertebral body surface and exceed 70’000 microstrain on the intervertebral discs, where failure was localized. The pattern, prepared in a dedicated way showed its suitability for both the bone and the disc. The evaluated failure strains were in agreement with the literature (Bayraktar, Morgan et al. 2004) (Spera, Genovese et al. 2011). To the authors' best knowledge, this kind of measurement including strain on soft and hard tissue simultaneously has never been performed before. This work showed the capability of DIC in providing full-field measures on the surface with complex geometry, such as the spine. The assertion of these potentialities could open the way to further application of DIC to study the behaviour of human spines, including improvement of spinal fixation devices