Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 3 - 3
1 Jun 2021
Dejtiar D Wesseling M Wirix-Speetjens R Perez M
Full Access

Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR) implant position and model-predicted post-operative knee kinematics. The final aim was to find a patient-specific implant alignment that will result in the estimated post-operative knee kinematics closest to the native knee. Methods. We developed subject-specific musculoskeletal models (MSM) based on magnetic resonance images (MRI) of four ex vivo left legs. The MSM allowed for the estimation of secondary knee kinematics (e.g. varus-valgus rotation) as a function of contact, ligament, and muscle forces in a native and post-TKA knee. We then used this model to train an ANN with 1800 simulations of knee flexion with random implant position variations in the ±3 mm and ±3° range from mechanical alignment. The trained ANN was used to find the implant alignment that resulted in the smallest mean-square-error (MSE) between native and post-TKA tibiofemoral kinematics, which we term the dynamic alignment. Results. Dynamic alignment average MSE kinematic differences to the native knees were 1.47 mm (± 0.89 mm) for translations and 2.89° (± 2.83°) for rotations. The implant variations required were in the range of ±3 mm and ±3° from the starting mechanical alignment. Discussion. In this study we showed that the developed tool has the potential to find an implant position that will restore native tibiofemoral kinematics in TKA. The proposed method might also be used with other alignment strategies, such as to optimize implant position towards native ligament strains. If native knee kinematics are restored, a more normal gait pattern can be achieved, which might result in improved patient satisfaction. The small changes required to achieve the dynamic alignment do not represent large modifications that might compromise implant survivorship. Conclusion. Patient-specific implant position predicted with MSM and ANN can restore native knee function in a post-TKA knee with a standard CR implant


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 23 - 23
1 May 2016
Schwarzkopf R Cross M Huges D Laster S Lenz N
Full Access

Introduction. Achieving proper ligament tension in knee flexion within cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The distal femoral joint line (DFJL) is routinely used as a variable to assist in achieving proper flexion-extension gap balancing. No prior study has observed the possible effects of properly restoring the DFJL may have on ligament tension in flexion. The purpose of this computational analysis was to determine what effect the DFJL may have on ligament strains and tibiofemoral kinematics of CR knee designs in flexion. Methods. A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic. Tibiofemoral kinematics, contact points estimated from the femoral condyle low points, and ligament strain, change in length relative to the unloaded length, were measured at 90° knee flexion during a deep knee bend activity. Two different knee implants, a High Flexion CR (HFCR) and a Guided Motion CR (GMCR) design were used. Simulations were completed for changes in superior-inferior (SI) positioning of the femoral implant relative to the femur bone, in 2mm increments to simulate over and under resection of the DFJL. Results. The medial condyle of the femoral implant was 0.67mm and 0.47mm more posterior relative to the tibia per 1mm elevation of the DFJL for the HFCR and GMCR designs respectively. The lateral condyle was 0.80mm and 1.06mm more posterior relative to the tibia per 1mm elevation of the DFJL for the HFCR and GMCR designs, respectively. The strain in the LCL and MCL changed less than 0.0005mm/mm per 1mm change in DFJL indicating that those structures were not affected. The PCL bundles and the ITB were affected by changes in DFJL with strain increasing 0.005 and 0.004mm/mm in the AL PCL bundle respectively for HFCR and GMCR, strain increasing 0.006mm/mm in the PM PCL for both HFCR and GMCR, and ITB strain decreasing 0.006 and 0.004mm/mm respectively for the HFCR and GMCR per 1mm elevation of the DFJL. Discussion. Our findings suggest that DFJL affects ligament tension at 90° knee flexion and therefore flexion balance for cruciate retaining implants. The effect on ligament tension results from changes in the position of the femur bone and its ligament attachments with respect to the tibia, which is dependent on the implant geometry. DFJL places greater strain on the PCL because the conformity of the medial condyle prevents the femoral implant from sitting more posterior by the full amount of the DFJL elevation, which would be necessary to maintain the same AP position of the of the femur bone relative to the tibia and avoid increasing PCL strain. These results indicate that elevating the DFJL to address a tight extension space in a CR knee while the flexion space is well balanced could result in increased flexion tension especially when the flexion-extension mismatch is large, so to achieve balanced flexion and extension the amount of DFJL elevation may need to be reduced and the tibial resection may also need to be increased


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 22 - 22
1 May 2016
Schwarzkopf R Huges D Laster S Lenz N Cross M
Full Access

Introduction. Achieving proper ligament tension in knee flexion within posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. Ligament balance has been achieved through specific surgical technique steps. No prior study evaluated the possible effects of varying levels of posterior cruciate ligament (PCL) release on femorotibial contact location and PCL ligament strain. The purpose of this computational analysis was to determine what effect-varying levels of PCL release may have on the tibiofemoral kinematics and PCL strain. Methods. A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic structures and ligament insertions. A single CR knee system with two different tibial insert designs was tested, a Guided Motion (GM) and an ultra-congruent, Deep Dished (DD) design. Varying levels of PCL release were simulated by setting the stiffness of both bundles of the PCL to a percentage, ranging from 0–100% in 25% increments. Tibiofemoral kinematics was evaluated by measuring the contact points estimated from the femoral condyle low points, and ligament strain of the anterior-lateral (AL) and posterior-medial (PM) bundles. The maximum PCL strain was determined for each bundle to evaluate the risk of PCL rupture based on the PCL failure strain. Results. The femoral AP position of both medial and lateral condyles became more anterior as the PCL stiffness was reduced to simulate greater release in both GM and DD inserts. The effect of reduction in PCL stiffness on femoral AP position increased as the PCL stiffness became a smaller percentage of the intact stiffness. The DD insert had smaller changes in femoral AP position resulting from reduced PCL stiffness than the GM insert. PCL strain in both bundles increased as PCL stiffness was reduced. The effect of reduction in PCL stiffness on PCL strain increased as the PCL stiffness became smaller. The DD insert had smaller changes in PCL strain resulting from reduced PCL stiffness than the GM insert. The model predicts that the AL bundle should not rupture for a 75% release of the PCL. The maximum PM bundle strain data indicates that the risk of PM bundle rupture is greater than AL bundle. Discussion. Our findings suggest that a partial PCL release does have an impact on tibiofemoral kinematics and ligament tension throughout the knee flexion range of motion for varying implant designs. The effects of increased PCL release were: more anterior femoral position on the tibia and increased strain in both bundles of the PCL. The maximum strain data indicates that the AL bundle of the PCL should be able to safely withstand a 75% release, but the PM bundle of the PCL may be at risk of rupture after as little as a 25% release because its stiffness is lower than the AL bundle. Our findings indicate that though partial PCL release can be correlated with both knee kinematics and PCL strain, the relationship is rather dynamic and care should be taken when seeking to find optimal balance intra-operatively


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 121 - 121
1 Apr 2019
Renders T Heyse T Catani F Sussmann P De Corte R Labey L
Full Access

Introduction. Unicompartmental knee arthroplasty (UKA) currently experiences increased popularity. It is usually assumed that UKA shows kinematic features closer to the natural knee than total knee arthroplasty (TKA). Especially in younger patients more natural knee function and faster recovery have helped to increase the popularity of UKA. Another leading reason for the popularity of UKA is the ability to preserve the remaining healthy tissues in the knee, which is not always possible in TKA. Many biomechanical questions remain, however, with respect to this type of replacement. 25% of knees with medial compartment osteoarthritis also have a deficient anterior cruciate ligament [1]. In current clinical practice, medial UKA would be contraindicated in these patients. Our hypothesis is that kinematics after UKA in combination with ACL reconstruction should allow to restore joint function close to the native knee joint. This is clinically relevant, because functional benefits for medial UKA should especially be attractive to the young and active patient. Materials and Methods. Six fresh frozen full leg cadaver specimens were prepared to be mounted in a kinematic rig (Figure 1) with six degrees of freedom for the knee joint. Three motion patterns were applied: passive flexion-extension, open chain extension, and squatting. These motion patterns were performed in four situations for each specimen: with the native knee; after implantation of a medial UKA (Figure 2); next after cutting the ACL and finally after reconstruction of the ACL. During the loaded motions, quadriceps and hamstrings muscle forces were applied. Infrared cameras continuously recorded the trajectories of marker frames rigidly attached to femur, tibia and patella. Prior computer tomography allowed identification of coordinate frames of the bones and calculations of anatomical rotations and translations. Strains in the collateral ligaments were calculated from insertion site distances. Results. Knee kinematics and collateral ligament strains were quite close to the native situation after both UKA and ACL reconstruction for all motor tasks. Nevertheless, some statistically significant differences were detected, which may be relevant clinically and biomechanically. In general, insertion of a UKA led to a knee joint which was somewhat less adducted (Figure 3), with a medial femoral condyle located slightly higher, confirming previously published findings [2]. These effects were slightly reduced both after cutting as well as after reconstructing the ACL. The joint became somewhat less stable in the AP direction after insertion of a UKA and this instability persisted not only after cutting but even after reconstructing the ACL


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 65 - 65
1 Apr 2019
DesJardins J Stokes M Pietrykowski L Gambon T Greene B Bales C
Full Access

Introduction. There are over ½ million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore, there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. Materials and Methods. A novel knee arthroplasty system has been designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. A computational anatomical model (AnyBody) was developed that incorporated ligaments into an existing Journey II TKR. Ligaments were modeled and given biomechanical properties from literature. Simulated A/P drawer tests and knee flexion were analyzed for 2,916 possible cruciate ligament location and length combinations to determine the effects on the A/P stability of the TKR. A physical model was then constructed, and the design was verified by performing 110 N A/P drawer tests under 710 N of simulated body weight. Results and Discussion. As ACL insertion location moved posteriorly on the femur, it was found to decrease ACL ligament strain, enabling a higher range of flexion. In general, as ACL and PCL length increased, the A/P laxity of the TKR system increased linearly. Range of motion was found to be more dependent on ligament attachment location, and laxity was more dependent on ligament length. In this work, TKR stability was clearly affected by changes in synthetic ligament length and location. When comparing the laxity between a TKR with and without ligaments, the TKR with synthetic ligaments experienced significantly less displacement than a TKR without synthetic ligaments. Conclusions. The stability of a TKR can be increased while maintaining range of motion by incorporating synthetic ligaments into its design. The effectiveness of the ligaments was clearly dependent on two factors: length and location. It is imperative to the success of the implant to obtain the correct lengths and locations because improper placement or length can impact the outcome significantly. These results emphasize the need for a knee replacement that incorporates synthetic ligaments, with calibrated location and lengths, to significantly influence stability and possible kinematic performance of the TKR system, and potentially influencing long-term functional outcomes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 65 - 65
1 Apr 2018
DesJardins J Stokes M Pietrykowski L Gambon T Greene B Bales C
Full Access

Introduction. There are over one-half million total knee replacement (TKR) procedures performed each year in the United States and is projected to increase to over 3.48 million by 2030. Concurrent with the increase in TKR procedures is a trend of younger patients receiving knee implants (under the age of 65). These younger patients are known to have a 5% lower implant survival rate at 8 years post-op compared to older patients (65+ years), and they are also known to live more active lifestyles that place higher demands on the durability and functional performance of the TKR device. Conventional TKR designs increase articular conformity to increase stability, but these articular constraints decrease patient range of knee motion, often limiting key measures of femoral rollback, A/P motion, and deep knee flexion. Without this articular constraint however, many patients report TKR “instability” during activities such as walking and stair descent, which can significantly impede confidence of movement. Therefore there is a need for a TKR system that can offer enhanced stability while also maintaining active ranges of motion. Materials and Methods. A novel knee arthroplasty system was designed that uses synthetic ligament systems that can be surgically replaced, to provide ligamentous stability and natural motion to increase the functional performance of the implant. Using an anatomical knee model from the AnyBody software, a computational model that incorporated ligaments into an existing Journey II TKR was developed. Using the software ligaments were modeled and given biomechanical properties developed from equations from literature. Simulated A/P drawer tests and knee flexion test were analyzed for 2,916 possible cruciate ligament location and length combinations to determine the effects on the A/P stability of the TKR. A physical model was constructed, and the design was verified by performing 110 N A/P drawer tests under 710 N of simulated body weight. Results and Discussion. As ACL insertion location moved posteriorly on the femur, it was found to decrease ACL ligament strain, enabling a higher range of flexion. In general, as ACL and PCL length increased, the A/P laxity of the TKR system increased linearly. Range of motion was found to be more dependent on ligament attachment location, and laxity was more dependent on ligament length. In this work, TKR stability was clearly affected by changes in synthetic ligament length and location. When comparing the laxity between a TKR with and without ligaments, the TKR with synthetic ligaments experienced significantly less displacement than a TKR without synthetic ligaments as seen in Figure 1. Conclusions. This study shows that the stability of a TKR can be increased while maintaining range of motion by incorporating synthetic ligaments into this design. The effectiveness of the ligaments was clearly dependent on two factors: length and location, with incorrect lengths and locations significantly impairing ranges of motion. These results verify that a knee replacement can incorporate synthetic ligaments, and that with calibrated location and lengths, they can significantly influence stability and possible kinematic performance of the TKR system, and potentially influencing long-term functional outcomes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 284 - 284
1 Dec 2013
Delport H Labey L Sloten JV Bellemans J
Full Access

Today controversy exists whether restoration of neutral mechanical alignment should be attempted in all patients undergoing TKA. The restoration of constitutional rather than neutral mechanical alignment may in theory lead to a more physiological strain pattern in the collateral ligaments, and could therefore potentially be beneficial to patients. It was therefore our purpose to measure collateral ligament strains during three motor tasks in the native knee and compare them with the strains noted after TKA in different postoperative alignment conditions. Six cadaver specimens were examined using a validated knee kinematics rig under physiological loading conditions. The effect of coronal malalignment was evaluated by using custom made tibial implant inserts in order to induce different alignment conditions. The results indicated that after TKA insertion the strains in the collateral ligaments resembled best the preoperative pattern of the native knee specimens when constitutional alignment was restored. Restoration to neutral mechanical alignment was associated with greater collateral strain deviations from the native knee. Based upon this study, we conclude that restoration of constitutional alignment during TKA leads to more physiological periarticular soft tissue strains during loaded as well as unloaded motor tasks


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 100 - 100
1 Jan 2016
Verstraete M Luyckx T De Roo K Bellemans J Victor J
Full Access

It is nowadays widely recognized that patient satisfaction following knee arthroplasty strongly depends on ligament balancing. To obtain this balancing, the occurring ligament strain is assumed to play a crucial role. To measure this strain, a method is described in this paper that allows full field 3D evaluation of the strains. The latter is preferred over traditional measurement techniques, e.g. displacement transducers or strain gauges, as human soft tissue is not expected to deform uniformly due to its highly inhomogeneous and anisotropic properties. To facilitate full field strain measurements, the 3D digital image correlation (DIC) technique was adopted. This technique was previously validated by our research group on human tissue. First, a high contrast speckle pattern was applied on the sMCL. Therefore, the specimens are first coated with a small layer of methylene blue. Following, a random white speckle pattern is applied. During knee flexion, two cameras simultaneously take pictures of the deforming region at predefined flexion angles. Using dedicated software, the captured images are eventually combined and result in 3D full field strains and displacements. Using this method, the strain distribution was studied in six cadaveric knees during flexion extension movement. Therefore, the femur was rigidly fixed in a custom test rig. The tibia was left unconstrained, allowing the six degrees of freedom in the knee. A load was applied to all major muscles in physiological directions of each muscle by attaching a series of calibrated weights (Farahmand et al., J Orthop Res., 1998;16(1)). The direction of the pulling cables was controlled using a digital inclinometer for each specimen. As a result, a statically balanced muscle loading of the knee was obtained. From these cadaveric experiments, it is observed that on average the sMCL behaves isometrically between 0° and 90° of flexion. However, high regional differences in strain distribution are observed from the full field measurements. The proximal region of the sMCL experiences relatively high strains upon flexion. These strains are positive (tension) in the anterior part and negative (compression) in the posterior region. In contrast, the distal region remains approximately isometric upon knee flexion (see Figure 1). It is accordingly concluded that the sMCL behaves isometric, though large regional differences are observed. The proximal region experiences higher strains. Furthermore, the DIC technique provided valuable insights in the deformation of the sMCL. This technique will therefore be applied to study the impact of knee arthroplasty in the near future. Caption with figure 1: Full field strain distribution in the sMCL's longitudinal direction for specimen in 45° (a) and 90° (b) of knee flexion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 36 - 36
1 May 2016
Meere P Walker P Schneider S Salvadore G Borukhov I
Full Access

Introduction. The role of soft tissue balancing in optimizing functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. This is due in part to the inability of pure alignment to demonstrate excellent functional outcomes 6. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery 4. In theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral Ligaments Strain Ratio (CLSR) as a functional tool to quantify and track surgical changes in laxity of the collateral ligaments and correlate this ratio to validated functional scores and patient reported outcomes. The relationship with intra-operative balancing of compartmental loads can then be scrutinized. The benefits of varus-valgus balancing within 2o include increased range of motion 7, whereas pressure imbalance between the medial and lateral joint compartments has been linked to condylar liftoff and abnormal kinematics post-TKA 8. Methods. The study is a prospective IRB approved clinical study with three cohorts of 50 patients each: (1) a surgical prospective study group (2) a matched control group of non-operated high function patients; (3) a matched control group of high function knee arthroplasty recipients. Standard statistical analysis method is applied. The testing of the CLSR is performed using a validated Smart Knee Brace developed by the authors and previously reported 1. The output variables consist of the maximum angular change of the knee in the coronal plane at 10 degrees of flexion produced by a controlled torque application in the varus and valgus (VV) directions. This creates measureable strain on the lateral and medial collateral ligaments, which is reported as a ratio (CLSR). The New Knee Society Score is used to track outcomes. The intra-operative balance is achieved by means of an instrumented tibial tray (OrthoSensor, Inc). Results. Pre-operative scatter graphs (Fig 1) demonstrate a wide distribution of absolute VV values, reflecting the spectrum of pathological states. The relative distribution of strain after surgery trends towards consolidation. The median CLSR is 0.55 with a SD of 0.20 at 4 weeks post-operative. This asymmetrical value indicates a shift toward a tighter medial side as noted in the non-operated cohort. Scatter graphs demonstrate post-operative clustering similar to that reported by the authors for kinetic loads after soft tissue balancing (Fig 2)3. The overall displacement values range from 0 −4 degrees. Discussion. The angular changes under standard torque appear to correlate with previously reported linear displacement values 3. Past studies do indicate a shift toward a tighter medial side in healthy older individuals, with an average CLSR in extension and flexion of 0.55 5. Success in achieving soft tissue balancing of the knee at the time of arthroplasty surgery may be predicted by a defined collateral ligament strain ratio under controlled VV testing. This study demonstrates clustering of the strain ratio in slight medial tightness with a range of absolute angular displacements of 0–4 degrees


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 70 - 70
1 Aug 2013
Alhares G Eschweiler J Radermacher K
Full Access

Knee biomechanics after total knee arthroplasty (TKA) has received more attention in recent years. One critical biomechanical aspect involved in the workflow of present TKA strategies is the intraoperative optimisation of ligament balancing. Ligament balancing is usually performed with passive flexion-extension in unloaded situations. Medial and lateral ligaments strains after TKA differ in loaded flexion compared to unloaded passive flexion making the passive unloaded ligament balancing for TKA questionable. To address this problem, the development of detailed and specific knowledge on the biomechanical behaviour of loaded knee structures is essential. Stress MRI techniques were introduced in previous studies to evaluate loaded joint kinematics. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full body weight-bearing conditions. In this work, we proposed a combined MR imaging approach for measurement and assessment of knee kinematics under full body weight-bearing in single legged stance as a first step towards the understanding of complex biomechanical aspects of bony structures and soft tissue envelope. The proposed method is based on registration of high resolution static MRI data (supine acquisition) with low resolution data, quasi-static upright-MRI data (loaded flexion positions) and was applied for the measurement of tibio-femoral kinematics in 10 healthy volunteers. The high resolution MRI data were acquired using a 1.5T Philips-Intera system, while the quasi-static MRI data (full bodyweight-bearing) was obtained with a 0.6T Fonar-Upright™ system. Contours of femur, tibia, and patella from both MRI techniques were extracted using expert manual segmentation. Anatomical surface models were then obtained for the high resolution static data. The upright-MRI acquisition consisted of Multi-2D, quasi-static sagittal scans each including 4 slices for each flexion angle. Starting with full knee extension, the subjects were asked to increase the flexion in 4–5 steps to reach the maximum flexion angle possible under space and force limitations. Knees were softly padded for stabilisation in lateral-medial direction only in order to reduce motion artifacts. During the upright acquisition the subjects were asked to transfer their bodyweight onto the leg being imaged and maintain the predefined flexion position in single legged stance. The acquisition at every flexion angle was obtained near the scanner's isocenter and takes ∼39 seconds. The anatomical surface models of the static data were each registered to their corresponding contours from the weight-bearing scans using an iterative closest point (ICP) based approach. A reference registration step was carried out to register the surface models to the full extension loaded position. The registered surfaces from this step were then considered as initial conditions for next ICP registration step. This procedure was similarly repeated to ensure successful registrations between subsequent flexion acquisitions. The tibio-femoral kinematics was calculated using the joint coordinate system (JCS). The combined MR imaging approach allows the non-invasive measurement of kinematics in single legged stance and under physiological full weight-bearing conditions. We believe that this method can provide valuable insights for TKA for the validation of patient-specific biomechanical models


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 13 - 13
1 Aug 2013
Alhares G Eschweiler J Radermacher K
Full Access

Knee biomechanics after total knee arthroplasty (TKA) has received more attention in recent years. One critical biomechanical aspect involved in the workflow of present TKA strategies is the intraoperative optimisation of ligament balancing. Ligament balancing is usually performed with passive flexion-extension in unloaded situations. Medial and lateral ligaments strains after TKA differ in loaded flexion compared to unloaded passive flexion making the passive unloaded ligament balancing for TKA questionable. To address this problem, the development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures is essential. Stress MRI techniques were introduced in previous studies to evaluate loaded joint kinematics. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full body weight-bearing conditions. In this work, we proposed a combined MR imaging approach for measurement and assessment of knee kinematics under full body weight-bearing in single legged stance as a first step towards the understanding of complex biomechanical aspects of bony structures and soft tissue envelope. The proposed method is based on registration of high resolution static MRI data (supine acquisition) with low resolution data, quasi-static upright-MRI data (loaded flexion positions) and was applied for the measurement of tibio-femoral kinematics in 10 healthy volunteers. The high resolution MRI data were acquired using a 1.5T Philips-Intera system, while the quasi-static MRI data (full bodyweight-bearing) was obtained with a 0.6T Fonar-Upright™ system. Contours of femur, tibia, and patella from both MRI techniques were extracted using expert manual segmentation. Anatomical surface models were then obtained for the high resolution static data. The upright-MRI acquisition consisted of Multi-2D, quasi-static sagittal scans each including 4 slices for each flexion angle. Starting with full knee extension, the subjects were asked to increase the flexion in 4–5 steps to reach the maximum flexion angle possible under space and force limitations. Knees were softly padded for stabilisation in lateral-medial direction only in order to reduce motion artifacts. During the upright acquisition the subjects were asked to transfer their bodyweight onto the leg being imaged and maintain the predefined flexion position in single legged stance. The acquisition at every flexion angle was obtained near the scanner's isocenter and takes ∼39 seconds. The anatomical surface models of the static data were each registered to their corresponding contours from the weight-bearing scans using an iterative closest point (ICP) based approach. A reference registration step was carried out to register the surface models to the full extension loaded position. The registered surfaces from this step were then considered as initial conditions for next ICP registration step. This procedure was similarly repeated to ensure successful registrations between subsequent flexion acquisitions. The tibio-femoral kinematics was calculated using the joint coordinate system (JCS). The combined MR imaging approach allows the non-invasive measurement of kinematics in single legged stance and under physiological full weight-bearing conditions. We believe that this method can provide valuable insights for TKA for the validation of patient-specific biomechanical models


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 100 - 100
1 Sep 2012
Labey L Chevalier Y Fukagawa S Innocenti B Okon T Bellemans J Kowalczewski J
Full Access

Introduction. Optimal knee joint function obviously requires a delicate balance between the osseous anatomy and the surrounding soft tissues, which is distorted in the case of joint line elevation (JLE). Although several studies have found no correlation between JLE and outcome, others have linked JLE to inferior results. The purpose of this in vitro investigation was to evaluate the effect of JLE on tibiofemoral kinematics and collateral ligament strains. Materials and Methods. Six cadaver knees were equipped with reflective markers on femur and tibia and CT scans were made. A total knee arthroplasty (TKA) was performed preserving the native joint level. The knees were then tested in passive flexion-extension and squatting in a knee kinematics simulator while marker positions were recorded with an optical system. During squatting quadriceps forces were measured as well as tibio-femoral contact pressures. Finally, a revision TKA was performed with JLE by 4 mm. The femoral component was downsized and a thicker insert was used. The knees were again tested as before. Based on the bony landmarks identified in the CT scans and the measured trajectories of the markers, relative tibiofemoral kinematics could be calculated as well as distance changes between insertions of the collateral ligaments. Statistical tests were carried out to detect significant differences in kinematic patterns, ligaments elongation, tibiofemoral contact pressures and quadriceps forces between the primary TKA and after JLE. Results. Tibiofemoral kinematics are shown in Figure 1. For both passive flexion and squatting, tibial external rotation and adduction were similar before and after JLE. In passive flexion, JLE decreased the posterior translation of the femoral medial and lateral condyle centres, especially beyond 40 degrees of flexion. A slight 5% anterior shift of both centres was noted after JLE during squatting, but this was not significant. Strains in the collateral ligaments are shown in Figure 2. The collateral ligament lengths remained constant during passive flexion and were unaffected by elevation of the joint line. During squatting, the sMCL stretched with flexion after primary TKA and this behaviour stayed constant when the joint line was elevated. The LCL showed a similar loosening trend in both TKA configurations. Also tibiofemoral joint kinetics were not affected by JLE: quadriceps force and contact pressures all remained essentially unchanged during squatting before and after JLE. Discussion and conclusion. Although clinical observations have indicated that JLE is associated with inferior clinical results, the effects of JLE on knee biomechanics which might explain these outcomes remain relatively unknown. In this study, we specifically evaluated those effects on tibiofemoral kinematics and kinetics, as well as elongation of the collateral ligaments. As our current study did not detect any effect of JLE in tibiofemoral kinematics, kinetics, and strains of collateral ligaments in revision TKA, it is possible that these effects may be limited to or triggered at the patello-femoral joint, and more significant with higher joint line elevations than the 4-mm level tested in the current study. This hypothesis needs to be further investigated in future in-vitro and in-vivo studies