Good
A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones. Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups. CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material. We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations.
A Morel-Lavallee lesion (MLL) is a benign cystic lesion that occurs due to injury to the soft-tissue envelope's perforating vascular and lymphatic systems, resulting in a distinctive hemolymphatic fluid accumulation between the tissue layers. The MLL has the potential to make a significant impact on the treatment of orthopaedic injuries. A 79-year-old male patient community ambulatory with assisting aid (cane) known case of Diabetes mellitus, hypertension, bronchial asthma and ischemic heart disease. He was brought to the Emergency, complaining of right hip discomfort and burning sensation for the last 5 days with no history of recent trauma at all. Patient had history of right trochanteric femur fracture 3 years ago, treated with DHS in a privet service. Clinical and Radiological assessment showed that the patient mostly has acute MLL due to
Summary Statement. Tibia plateau split fracture fixation with two cancellous screws is particularly suitable for non-osteoporotic bone, whereas four cortical
Metacarpal fractures represent up to 33% of all hand fractures; of which the majority can be treated non-operatively. Previous research has shown excellent putcomes with non-operative treatment yet surgical stabilisation is recommended to avoid malrotation and symptomatic shortening. It is unknown whether operative is superior to non-operative treatment in oblique or spiral metacarpal shaft fractures. The aim of the study was to compare non-operative treatment of mobilisation with open surgical stabilisation. 42 adults (≥ 18 years) with a single displaced oblique or spiral metacarpal shaft fractures were randomly assigned in a 1:1 pattern to either non-operative treatment with free mobilisation or operative treatment with open reduction and fixation with
Background. Hip fractures cause significant morbidity and mortality, affecting 70,000 people in the UK each year. The dynamic hip screw (DHS) is used for the osteosynthesis of extracapsular neck of femur fractures, a procedure that requires complex psychomotor skills to achieve optimal
Introduction and Objective. Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for
Background. The advantages of treatment by open reduction and internal fixation for intertrochanteric fractures of the proximal femur have been well known for several decades. Failure of fixation can result in revision surgery, prolonged inpatient stay and has major socio-economic consequences. There are many new devices on the market to help deal with this problem. Expandable hip screw (EHS) is one such device, which is an expanding bolt that may offer superior fixation in osteoporotic bone compared to the standard dynamic hip screw (DHS) type device. Methods. Static axial compression tests with elastic deformation of the specimens were performed with a crosshead speed of 10 mm/min to determine stiffness of testing was performed with 3 cycles from 0 N to 250 N, 3 cycles from 0 N to 500 N, 3 cycles from 0 N to 750 N and 3 cycles from 0 N to 1000 N with a holding time of 10 s per test cycle. Displacement control was apply the pullout strength with a velocity of 1mm/sec. The ability to resist rotation about the axis of a
Introduction and Aims. Peritrochanteric femur fractures are common and impose major costs on the healthcare system. A fixed angle sliding hip screw is the principle method of treatment, but the rate of mechanical failure associated with these devices can be high; the usual mechanism being the collapse of the neck shaft angle leading to extrusion of the screw from the femoral head, commonly known as “cutout”. Many variables contribute to the risk of cutout, however there is substantial evidence that the “Tip Apex Distance” (a single number that summarises the position and depth of the
It is widely accepted that a tip apex distance of greater than 25mm is associated with dynamic hip screw (DHS) failure and cut-out. The aim was to devise an accurate and easy method for calculation of DHS tip apex distance (TAD) from intraoperative imaging using the tools available on Kodac Picture Archiving and Communications System. This method was applied to all patients treated with a DHS for intertrochanteric hip fracture during a six month period. Any subsequent radiographs were assessed for evidence of failure within 18 months. The TAD was calculated using a modification of a previously described method using a similar imaging system (Johnston et al, Injury 2008) which has been shown to be accurate and reproducible. Scaling was based on the 12.5mm thread diameter of all Synthes (Switzerland) DHS screws. 60 patients underwent a DHS during the study. Nine patients were excluded who had an additional method of fixation or an intracapsular fracture. Four patients had insufficient xrays for analysis. Data was gathered for 47 patients and showed a mean TAD of 17mm (range 8.2–30.6mm). Three patients had a TAD greater than 25mm. 22 patients had a post-operative xray within 18 months. There were two cut-outs identified and both were from patients with a TAD of greater than 25mm (25.7 and 30.6mm). No incidences of implant failure or complications were identified for patients with acceptable TADs. 93.6% of screws were therefore inserted satisfactorily. Two out of the three patients with a TAD greater than 25mm had xray evidence of screw cut-out. This study supports previous evidence that a DHS
Different calcaneal plates with locked screws were compared in an experimental model of a calcaneal fracture. Four plate models were tested, three with uniaxially-locked screws (Synthes, Newdeal, Darco), and one with polyaxially-locked screws (90° ± 15°) (Rimbus). Synthetic calcanei were osteotomised to create a fracture model and then fixed with the plates and screws. Seven specimens for each plate model were subjected to cyclic loading (preload 20 N, 1000 cycles at 800 N, 0.75 mm/s), and load to failure (0.75 mm/s). During cyclic loading, the plate with polyaxially-locked screws (Rimbus) showed significantly lower displacement in the primary loading direction than the plates with uniaxially-locked screws (mean values of maximum displacement during cyclic loading: Rimbus, 3.13 mm ( The increased stability of a plate with polyaxially-locked screws demonstrated during cyclic loading compared with plates with uniaxially-locked screws may be beneficial for clinical use.
The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm external fixator, both on synthetic bone models. The primary outcome measures were the Objective Structural Assessment of technical skills global rating scale on video recordings of the procedures which were scored by two independent expert observers, and the hand movements of the surgeons which were analysed using the Imperial College Surgical Assessment Device. The video scores were significantly different for the three groups in all three procedures (p <
0.05), with excellent inter-rater reliability (α = 0.88). The novice and intermediate groups specifically were significantly different in their performance with dynamic compression plate and intramedullary nails (p <
0.05). Movement analysis distinguished between the three groups in the dynamic compression plate model, but a ceiling effect was demonstrated in the intramedullary nail and external fixator procedures, where intermediates and experts performed to comparable standards (p >
0.6). A total of 85% (18 of 21) of the subjects found the dynamic compression model and 57% (12 of 21) found all the models acceptable tools of assessment. This study has validated a low-cost, high-fidelity porcine dynamic compression plate model using video rating scores for skills assessment and movement analysis. It has also demonstrated that Synbone models for the application of and intramedullary nail and an external fixator are less sensitive and should be improved for further assessment of surgical skills in trauma. The availability of valid objective tools of assessment of surgical skills allows further studies into improving methods of training.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.