Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOMECHANICAL ASSESSMENT OF A NOVEL EXPANDABLE HIP SCREW VERSUS DYNAMIC HIP SCREW

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 2.



Abstract

Background

The advantages of treatment by open reduction and internal fixation for intertrochanteric fractures of the proximal femur have been well known for several decades. Failure of fixation can result in revision surgery, prolonged inpatient stay and has major socio-economic consequences. There are many new devices on the market to help deal with this problem. Expandable hip screw (EHS) is one such device, which is an expanding bolt that may offer superior fixation in osteoporotic bone compared to the standard dynamic hip screw (DHS) type device.

Methods

Static axial compression tests with elastic deformation of the specimens were performed with a crosshead speed of 10 mm/min to determine stiffness of testing was performed with 3 cycles from 0 N to 250 N, 3 cycles from 0 N to 500 N, 3 cycles from 0 N to 750 N and 3 cycles from 0 N to 1000 N with a holding time of 10 s per test cycle. Displacement control was apply the pullout strength with a velocity of 1mm/sec. The ability to resist rotation about the axis of a lag screw is of critical importance particularly when the fracture line is perpendicular, or nearly perpendicular, to the femoral neck. Implants were subjected to a rotation of 1 degree/sec and peak torque values were recorded.

Results

The mean axial cyclic loading DHS showed higher stiffness value than EHS. The mean stiffness achieved at pullout test in the EHS and DHS groups were 587.8N/mm and, 334.1N/mm respectively (p<0.05). The peak torque for the EHS device was significantly greater than the torque for the DHS with torque values of 4.56 Nm/degree and 2.97 Nm/degree, respectively (p<0.05).

Conclusions

The EHS device demonstrated superior resistance to pullout and torsion greater loads compared to the DHS in an unstable fracture model. However, axial cyclic loading demonstrate lower strength, by optimising the size of device will perform.

Level of Evidence

Level 5