Background. Spondylolysis (SL) of the lower lumbar spine is frequently associated with spina bifida occulta (SBO). There has not been any study that has demonstrated biomechanical or genetic predispositions to explain the coexistence of these two pathologies. Purpose. To test the hypothesis that fatigue failure limits will be exceeded in the case of a bifid arch, but not in the intact case, when the segment is subjected to complex loading corresponding to normal sporting activities. Methods. Finite element models of natural and SBO (L4-S1) including ligaments were loaded axially to 1kN and were combined with axial rotation of 3°. Bilateral stresses, alternating stresses and shear fatigue failure on intact and SBO L5
Revision of the failed femoral component can be challenging. Multiple reconstructive options are available and the procedure is technically difficult and thus meticulous pre-operative planning is required. The Paprosky Femoral Classification is useful as it helps the surgeon determine what bone stock is available for fixation and hence, which type of femoral reconstruction is most appropriate. Type 1 Defect: This is essentially a normal femur and reconstruction can proceed as the surgeon would with a primary femur. Type 2 Defect: The metaphysis is damaged but still supportive and hence a stem that gains primary fixation in the metaphysis can be used. Type 3 Defect: The metaphysis is damaged and non-supportive and hence a stem that gains primary fixation in the diaphysis is required. Broken down into types “A” and “B” based on the amount of intact
Background. The purpose of this study was to investigate the morphology characteristic of proximal femur of Chinese people. 170 healthy Southern Chinese hips being measured using 3D computer tomographic, in order to improve prosthesis design and preoperation plan of total hip arthroplasty. Methods. This study measured proximal femoral geometry in 85 healthy Southern Chinese, included 39 women (78 hips) and 46 men (92 hips) (mean age: 33.9 y, mean height: 164.7 cm, mean weight 59.9 kg). Medullary canal morphology measurements, include: the position of
As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. A classification of femoral deficiency has been developed and an algorithmic approach to femoral reconstruction is presented. Type I:. Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than 4cm of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than 4cm of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The
Objective. To three-dimensionally reconstruct the proximal femur of DDH (Developmental dysplasia of the hip) and measure the related anatomic parameters, so that we could have a further understanding of the morphological variation of the proximal femur of DDH, which would help in the preoperative planning and prosthesis design specific for DDH. Methods. From Jan.2012 to Dec.2014, 38 patients (47 hips) of DDH were admitted and 30 volunteers (30 hips) were selected as controls. All hips from both groups were examined by CT scan and radiographs. The Crowe classification method was applied. The CT data were imported into Mimics 17.0. The three-dimensional models of the proximal femur were then reconstructed, and the following parameters were measured: neck-shaft angle, neck length, offset, height of the centre of femoral head, height of the
Revision of the failed femoral component of a total hip arthroplasty can be challenging. Multiple reconstructive options are available and the operation itself can be particularly difficult and thus meticulous preoperative planning is required to pick the right “tool” for the case at hand. The Paprosky Femoral Classification is useful as it helps the surgeon determine what bone stock is available for fixation and hence, which type of femoral reconstruction is most appropriate. Monoblock, fully porous coated diaphyseal engaging femoral components are the “work-horse” of femoral revision. This type of a stem is used in my practice for Type 1–3a femoral defects. These stems are not used, however, in the following situations: The canal diameter is greater than 18mm; There is less than 4cm available for distal fixation in the
The femur begins to bow anteriorly at the 200 mm level, but may bow earlier in smaller people. If the stem to be used is less than 200 mm, a straight stem can be used. If the stem is longer than 200 mm, it will perforate the anterior femoral cortex. I know this because I did this on a few occasions more than 20 years ago. To use a long straight stem, there are two techniques. One can either do a diaphyseal osteotomy or one can do a Wagner split (extended trochanteric osteotomy). Both of these will put the knee in some degree of hyperextension, probably insignificant in the elderly, but it may be of significance in the young. In very young people, therefore, it may be preferable to use a bowed stem to avoid this degree of recurvatum. There are two different concepts of loading. Diaphyseal osteotomy implies a proximal loading has been sought. The Wagner split ignores the proximal femur and seeks conical fixation in the diaphysis. There will be very little bone-bone contact between what remains of the attached femur and the detached anterior cortex so that it is important to ensure that the blood supply to the anterior cortex remains intact, preferably by using Wagner's technique, using a quarter-inch osteotome inserted through the vastus to crack the medial cortex. Current modularity is of two types. Distal modularity was attempted many years ago and was never successful. Proximal modularity, as for example, the S-ROM stem, implies various sizes of sleeves fit onto the stem to get a proximal canal fill. In mid-stem modularity, the distal stem wedges into the cone. It has to be driven into where it jams and this can be somewhat unpredictable. For this reason, the solid Wagner stem has been replaced by the mid-stem modular. Once the distal femur is solidly embedded, the proximal body is then selected for height and version. The proximal body is unsupported in the mid-stem modular and initially, few fractures were noted at the taper junction. Cold rolling, shot peening and taper strengthening seem to have solved these problems. There are a variety of types of osteotomy, which can be used for different deformities. With a mid-stem modular system, generally, all that needs to be done is a Wagner-type split and fixation is sought in the mid-diaphysis by conical reaming. No matter what stem is used, distal stability is necessary. This is achieved by flutes, which engage the endosteal cortex. The flutes alone must have sufficient rotational stability to overcome the service loads on the hip of 22 Nm. I divide revision into three categories. In type one, the
The advent of Elastic Stable Intramedullary Nailing has revolutionised the conservative treatment of long human bone fractures in children (Metaizeau, 1988; Metaizeau et al., 2004). Unfortunately, failures still occur due to excessive bending and fatigue (Linhart et al., 1999; Lascombes et al., 2006), bone refracture or nail failure (Bråten et al., 1993; Weinberg et al., 2003). Ideally, during surgery, nail insertion into the diaphyseal medullary canal should not interrupt or injure cartilage growth; nails should provide an improved rigidity and fracture stabilisation. This study aims at comparing deflections and stiffnesses of nail-bone assemblies: standard cylindrically-shaped nails (MI) vs. new cylindrical nails (MII) with a flattened face across the entire length allowing more inertia and a curved tip allowing better penetration into the cancellous bone of the metaphysis (Figure 1). MII exhibits a section with two parameters: a diameter C providing nail stiffness and a height C' providing practical dimension when both nails are crossed at the
Background. Cement restrictors are used for maintaining good filling and pressurization of bone cement during hip and knee arthroplasties. The limitations of certain cement restrictors include the inability to accommodate for large medullary canals particularly in revision procedures. We describe a technique using SurgicelTM (Johnson & Johnson) and SPONGOSTAN™ (Johnson & Johnson) (Fig 1) to form a cement restrictor that can accommodate for large canal diameters and provide excellent pressurisation. Technique. The technique involves the application of SPONGOSTAN™ (Johnson & Johnson) foam onto a SurgicelTM (Johnson & Johnson) mesh which is then rolled onto the SPONGOSTAN™ foam forming a uniform cylindrical structure Figs 2,3. The diameter of the restrictor can be adjusted according to the desired femoral canal diameter through increasing the thickness of the SPONGOSTAN™ (Johnson & Johnson) foam. The restrictor is then inserted into the desired position in the medullary canal where it expands uniformly creating an effective restrictor and bone plug Fig 4. Bone cement is then applied and pressurisation commenced prior to the insertion of the implant Fig5. SPONGOSTAN™ is an absorbable haemostatic sponge intended for haemostatic use by applying to a bleeding surface. It consists of a sterile, water-insoluble, malleable, porcine gelatin absorbable sponge. Surgicel ™ is an absorbable hemostatic agent composed of oxidized regenerated cellulose. It is a sterile, absorbable knitted fabric that is flexible and adheres readily to bleeding surfaces. Both products are routinely used for their haemostatic properties in various surgical disciplines. Discussion. The use of intramedullary plugs in cemented total joint arthroplasty is essential in order to achieve good filling and pressurization in hip and knee arthoplasties, traditionally, a small piece of bone or a cement restrictor may be used to plug the shaft. Distal plugs seal the femoral canal, improve fixation and prevent bone cement from leaking during delivery and pressurization. Plugging the intramedullary canal during total hip arthroplasty increases penetration of cement into cancellous bone proximal to the intramedullary plug. Numerous plug designs and materials are available ranging from non-resorbable to resorbable. Regardless of design, all restrictors should avoid intramedullary cement leakage and plug migration during cement and stem insertion to ensure adequate intramedullary pressures. In some instances the diameter of the femoral canal is too wide to accommodate a conventional cement restrictor particularly when crossing the femoral
INTRODUCTION: As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. DISCUSSION: An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty: TYPE I: In a Type I femur, there is minimal loss of cancellous bone with an intact diaphysis. Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. TYPE II: In a Type II femur, there is extensive loss of the metaphyseal cancellous bone and thus fixation with cement is unreliable. In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively porous coated implant in 26 of 29 cases (90%) However, as the metaphysis is supportive, a cementless implant that achieves primary fixation in the metaphysis can be utilized. TYPE III A: In a Type IIIA femur, the metaphysis is non-supportive and an extensively coated stem of adequate length is utilised to ensure that more than 4 cm of scratch fit is obtained in the diaphysis. TYPE III B: Based on the poor results obtained with a cylindrical, extensively porous coated implant, our present preference is a modular, cementless, tapered stem with flutes for obtaining rotational stability. Excellent results have been reported with this type of implant and by virtue of its tapered design, excellent initial axial stability can be obtained even in femurs with a very short
Objective. The purpose of this study was to compare the proximal femoral morphology between normal Chinese and Caucasian populations by 3D analysis derived from CT data. Materials and Methods. 141 anonymous Chinese femoral CT scans (71 male and 70 female) with mean age of 60.1years (range 20–93) and 508 anonymous Caucasian left femoral CT scans (with mean age of 64.8years (range 20–93). The CT scans were segmented and converted to virtual bones using custom CT analytical software. (SOMA™ V.4.0) Femoral Head Offset (FHO) and Femoral Head Position (FHP) were measured from head center to proximal canal central axis and to calcar or 20mm above Lesser Trochanter (LT) respectively. The Femoral neck Anteversion (FA) and Caput-Collum-Diaphyseal (CCD) angles were also measured. The Medial Lateral Widths(MLW. n. ) of femoral canal were measured at 0, -10, LT, -30, -40, -60, -70 and -100mm levels from calcar. Anterior Posterior Widths (APW. n. ) were measured at 0, -60 and -100mm levels. The Flare Index (FI) was derived from the ratio of widths at 0 and -60mmor FI=W. 0. /W. −60. All measurements were performed in the same settings for both populations. The comparison was analyzed by Student T test. P<0.05 was considered significant. Results. The average FHO and FHP of Chinese were 38.4mm and 25.2mm and were both shorter than 42.1mm and 29.7mm of Caucasian's, P=2.3E-15 and P=1.7E-10. (Figure 1) CCD angle was 130.3° comparing to 127.7° of Caucasian P=1.5E-05. Chinese FA angle was 15.6° and Caucasian's was 14.7°, P=0.31. The average MLW. 1-8. were 43.1, 34.6, 28.5, 23.8, 20.6, 17, 16.2 and 14.4mm for Chinese and 43.7, 35.0, 28.7, 24.0, 20.6, 16.7, 15.7 and 13.5mm for Caucasian. P=9.4E-02, .32, .47, .50, .93, .20, .02 and 1.7E-05 respectively. (Figure 2) The average APW. 1-3. were 35.9, 15.5 and 13.7mm for Chinese and 43.7, 15.2 and 12.5mm for Caucasian. P=4E-62, 0.11 and 7.4E-10. (Figure 3) The total medial/lateral and medial/center FI were 2.5 and 2.8 for Chinese, 2.6 and 2.9 for Caucasian. P=.004 and 4.5E-06. The total anterior/posterior and anterior/center FI were 2.3 and 2.6 for Chinese, 2.9 and 2.5 for Caucasian. P=5.3E-61 and 8.5E-04. Conclusion and Discussion. Chinese had significantly lower FHO, FHP, APW. calcar. , FI. medial, M-L. and FI. A-P. ; significantly higher CCD angle and MLW.
Femoral components in total hip replacements fail in well-known ways. There is vertical sink, posterior rotation and pivot, either distal or mid-stem. In order to sink, the stem moves into valgus and then slides down the inside of the calcar. It does not cut through the calcar. To prevent sink and pivot, a canal filling stem is required. Canal fill prevents the stem from moving into valgus and, therefore, it will not sink. Two centimeters with complete canal fill is adequate in a primary stem. A long stem will give longer canal fill in a revision. Sharp distal flutes will prevent rotation. The distal end of the stem should be polished. One is looking for a distal stability, not distal fixation. If the
Introduction:. Extensive bone defects of the proximal femur e.g. due to aseptic loosening might require the implantation of megaprostheses. In the literature high loosening rates of such megaprostheses have been reported. However, different fixation methods have been developed to achieve adequate implant stability, which is reflected by differing design characteristics of the commonly used implants. Yet, a biomechanical comparison of these designs has not been reported. The aim of our study was to analyse potential differences in the biomechanical behaviour of three megaprostheses with different designs by measuring the primary rotational stability in vitro. Methods:. Four different stem designs [Group A: Megasystem-C® (Link), Group B: MUTARS®(Implantcast), Group C: GMRS™ (Stryker) and Group D: Segmental System (Zimmer); see Fig. 1] were implanted into 16 Sawbones® after generating a segmental AAOS Typ 2 defect. Using an established method to analyse the rotational stability, a cyclic axial torque of ± 7.0 Nm along the longitudinal stem axis was applied. Micromotions were measured at defined levels of the bone and the implant [Fig. 2]. The calculation of relative micromotions at the bone-implant interface allowed classifying the rotational implant stability. Results:. All four different implants exhibited low micromotions, indicating adequate primary stability. Lowest micromotions for all designs were located near the femoral
As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in preoperative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. A classification of femoral deficiency has been developed and an algorithmic approach to femoral reconstruction is presented. An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty. Type I: In a Type I femur, there is minimal loss of cancellous bone with an intact diaphysis. Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. Type II: In a Type II femur, there is extensive loss of the metaphyseal cancellous bone and thus, fixation with cement is unreliable. In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively porous coated implant. However, as the metaphysis is supportive, a cementless implant that achieves primary fixation in the metaphysis can be utilised. Type IIIA: In a Type IIIA femur, the metaphysis is non-supportive and an extensively coated stem of adequate length is utilised to ensure that more than 4cm of scratch fit is obtained in the diaphysis. Type IIIB: Based on the poor results obtained with a cylindrical, extensively porous coated implant (with 4 of 8 reconstructions failing), our present preference is a modular, cementless, tapered stem with flutes for obtaining rotational stability. Type IV: The
Robotic surgical systems reduce the cognitive workload of the surgeon by assisting in guidance and operational tasks. As a result, higher precision and a decreased surgery time are achieved, while human errors are minimised. However, most of robotic systems are expensive, bulky and limited to specific applications. In this paper a novel semi-automatic robotic system is evaluated, that offers the high accuracies of robotic surgery while remaining small, universally applicable and easy to use. The system is composed of a universally applicable handheld device, called Smart Screwdriver (SSD) and an application specific kinematic chain serving as a tool guide. The guide mechanism is equipped with motion screws. By inserting the SSD into a screw head, the screw is identified automatically and the required number of revolutions is executed to achieve the desired pose of the tool guide. The usability of the system was evaluated according to IEC 60601-1-6 using pedicle screw implementation as an example. The achieved positioning accuracies of the drill sleeve were comparable to those of fully automatic robotic systems with −0.54 ± 0.93 mm (max: − 2.08 mm) in medial/lateral-direction and 0.17 ± 0.51 mm (max: 1.39 mm) in cranial/caudal- direction in the pedicle
Implant, surgeon, and patient-related factors all contribute to the risk of revision requiring an ETO. It is shown in the literature that the ETO can be a successful and easy-to-be-performed technique, but it can also lead to a bunch of complications, like peri-prosthetic fracture, loosening of the implant, damage of the
As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in preoperative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. We have developed a classification of femoral deficiency and an algorithmic approach to femoral reconstruction is presented. Type I: Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than four centimeters of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than four centimeters of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The
Revision of the failed femoral component of a total hip arthroplasty can be challenging. Multiple reconstructive options are available and the operation itself can be particularly difficult and thus meticulous pre-operative planning is required to pick the right “tool” for the case at hand. The Paprosky Femoral Classification is useful as it helps the surgeon determine what bone stock is available for fixation and hence, which type of femoral reconstruction is most appropriate. Monoblock, fully porous coated diaphyseal engaging femoral components are the “work-horse” of femoral revision and are used in my practice for approximately 70% of reconstructions. These stems are associated with problems, in the following situations: The canal diameter is greater than 18mm; There is less than 4cm available for distal fixation in the
The aim of this paper is to describe the technique and evaluate the effectiveness of the RIA system in the first cases of bone loss treated by the authors with this technique. Between January 2010 and January 2011, ten patients were treated with an average age of fourty six years, with infected bone loss as a result of open fractures in various bone segments, with multiple failed treatment attempts, including three humeri, four femurs and three tibiae. The average size of the initial bone loss was 4 cm, varying from 1 to 8 cm. In 4 patients it was used simultaneously a Ilizarov apparatus with acute compression of the focus, in two patients a Ender pin and monolateral external fixator, three other cases with a SAFE nail with core with antibiotics and in one case an osteosynthesis with a plate and screws. The RIA was introduced with a percutaneous technique with a one pass drilling. The graft thus collected was mixed with appropriate antibiotics and aplied at the defect. The volume of the harvested graft, complications of the donor and recipient and the final results was recorded. The review showed that the average volume of graft was 60 cc, from 20 to 90 cc. In two female patients older than 70 years with osteoporosis, insufficient bone of poor quality was obtained. Problems included a case of iatrogenic fracture of the donor site, due to poor surgical technique and a case of relapse of the nonunion. Regarding the effectiveness of grafts extracted with the RIA system, 90% of the cases achieved consolidation in average of 5 months after grafting, range 3–9 months. This short experience with the RIA system showed that it is an attractive method allowing a rapid removal of a large volume of bone graft with a minimally invasive approach and a short learning curve. It is not indicated in elderly patients with osteoporosis and those with a narrow medullar canal less than 11 mm. Special attention must be done to the need to choose a drill no larger than 1 mm of the diameter of the
As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in pre-operative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. Type I: Minimal loss of metaphyseal cancellous bone with an intact diaphysis. Often seen when conversion of a cementless femoral component without biological ingrowth surface requires revision. Type II: Extensive loss of metaphyseal cancellous bone with an intact diaphysis. Often encountered after the removal of a cemented femoral component. Type IIIA: The metaphysis is severely damaged and non-supportive with more than 4 cm of intact diaphyseal bone for distal fixation. This type of defect is commonly seen after removal of grossly loose femoral components inserted with first generation cementing techniques. Type IIIB: The metaphysis is severely damaged and non-supportive with less than 4 cm of diaphyseal bone available for distal fixation. This type of defect is often seen following failure of a cemented femoral component that was inserted with a cement restrictor and cementless femoral components associated with significant distal osteolysis. Type IV: Extensive meta-diaphyseal damage in conjunction with a widened femoral canal. The