Introduction. Total knee arthroplasty is effective for the management of osteoarthritis of the knee. Conventional techniques utilizing manual instrumentation (MI) make use of
Purpose. Use of theguide angle method using
It is very difficult to perform total knee arthroplasty (TKA) for severe varus bowing deformity of femur. We performed simultaneous combined femoral supra-condyle valgus osteotomy and TKA for the case had bilateral varus knees with bowing deformity of femurs. Case presentation. A 62-year-old woman consulted our clinic with bilateral knee pain and walking distability. She was diagnosed rickets and had bilateral severe varus bowing deformity of femurs from an infant. Her height was 133 cm and body weight was 51 kg. Bilateral femur demonstrated severe bowing and her knee joint demonstrated varus deformity with medial joint line tenderness, no local heat, and no joint effusion. Bilateral knee ROM was 90 degrees with motion crepitus. Bilateral lower leg demonstrated mild internal rotation deformity. Bilateral JOA knee score was 40 Roentgenogram demonstrated knee osteoarthritis with incomplete development of femoral condyle. Mechanical FTA angles were 206 degree on the right and 201 on the left. She was received right simultaneous femoral supra-condyle valgus osteotomy with TKA was performed at age 63. Key points of surgical techniques were to use the
Introduction. Stryker computer navigation system has been used for total knee arthroplasty (TKA) procedures since October 2008 at the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics. Material and methods. There have been 126 computer assisted TKA that accounted for 11.5 % of primary TKA within this period (1096 procedures). Arthritis of the knee joints with evident pain syndrome was an indication to TKA surgery. Arthritis of the knee joint of 27 patients (21.4 %) was accompanied by femoral deformity of various etiology with debris found in the medullary canal in several cases. The rest 99 patients (78.6 %) were regular cases of primary TKA. Results. We compared the results of correction of lower limb biomechanical axis with TKA employing navigation and without computer assistance. Regular TKA procedures showed no substantial difference in the correction of biomechanical axis. Complete correction using computer navigation was achieved in 85 % of the cases versus 79 % of the patients without navigation. The deformity up to 3° developed in 14 % of navigated cases and in 17 % of the cases without computer assistance. An error of deformity correction was 3–5° in 4 % of the cases without computer navigation. Those were cases of challenging primary TKA. So the advantages of computer navigation have become evident with greater deformities, and in the cases when
INTRODUCTION. Despite clear clinical advantages Unicompartimetal Knee Replacement (UKR) still remain a high demanding and less forgiving surgical procedure. Different Authors in literature pointed out how in coronal tibial malalignment beyond 3° as well as tibial slope beyond 7° increase the rate of aseptic failure. Likewise, overcorrection in the coronal plain is a well recognised cause of failure because of an overweighting on the controlateral compartment. Furthermore it has been shown how in UKR surgery even using short narrow
Introduction:. Total knee arthroplasty (TKA) is an effective operation for the management of osteoarthritis of the knee. Conventional technique utilizing manual instrumentation (MI) allows for reproducible and accurate execution of the procedure. The most common techniques make use of
Introduction. Intramedullary femoral alignment guide is mostly used in total knee arthroplasty (TKA). Accurate preoperative plan is critical to get good alignments when we use
Purpose. Most of revision TKA needs bone reconstruction. The success of revision TKA depends on how well the bone reconstruction can be done. The method of reconstruction includes bone cementing, metal augmentation, allogenic bone graft, APC and tumor prosthesis, etc. In moderate to severe bone defect, allograft is needed. However, allogenic bone graft is surgically demanding and needs long operation time, which is very risky to the elderly patients. The authors revised an alternative method of bone defect reconstruction using cementing method with multiple screws augmentation. Methods. There were 12 cases of patients with large defect which could not be reconstructed with metal augment from April 2012 to April 2014. The authors performed 3 to 5 screws fixation on the defect site. Sclerotic bone is prepared with burring for better cementing. 3 ∼ 5 screws according to the size of defect. The length of screw fixation was determined as deep to the bone until stable fixation just beneath the implant. When drilling for the screw insertion,
Introduction. Two aspects are very important for knee joint replacement – restoration of biomechanical limb axis and achieving ligaments balance. Computer navigation allows us to do all this. Material and methods. We analysed 94 knee joint replacement surgeries using computer navigation by “STRYKER”. Results. There is no substantial difference between results of correction of biomechanical axis with computer navigation and without it in case of uncomplicated joint replacement. So, completer correction of axis (varus/valgus zero degrees) with computer navigation was achieved in 84% of cases versus 79% without navigation. There was varus or valgus deformity up to two degrees in 12% after surgery (without navigation −17% of cases). Error in deformity correction without application of navigation was three-five degrees in 4% of cases (all were challenging joint replacement). Advantages of navigation are obvious in case of large deformities, and also when insertion of
Introduction. The conventional bone resection technique in TKA is recognized as less accurate than computer-assisted surgery (CAS) and patient-matched instrumentation (PMI). However, these systems are not available to all surgeons performing TKAs. Furthermore, it was recently reported that PMI accuracy is not always better than that of the conventional bone resection technique. As such, most surgeons use the conventional technique for distal femur and proximal tibia resection, and efforts to improve bone resection accuracy with conventional technique are necessary. Here, we examined intraoperative X-rays after bone resection of the distal femur and proximal tibia with conventional bone resection technique. If the cutting angle was not good and the difference from preoperative planning was over 3º, we considered re-cutting the bone to correct the angle. Methods. We investigated 117 knees in this study. The cutting angle of the distal femur was preoperatively determined by whole-length femoral X-ray. The conventional technique with an
Introduction. Functional outcomes of mechanically aligned (MA) total knee arthroplasty have plateaued. The aim of this study is to find an alternative technique for implant positioning that improves functional outcomes of TKA. Methods. We prospectively randomized 100 consecutive patients undergoing TKA into two groups: in the group A an
Introduction. There is a controversy with regard to the treatment of osteoarthritis (OA) of the knee in patients with considerable deformities of the femoral or tibial shafts. Some surgeons prefer to correct the deformity while performing TKA at the level of the knee joint. However, this technique requires accurate planning and execution of the planned cuts. In addition, the use of
INTRODUCTION. Revision total knee replacement (TKR) is a challenging procedure, especially because most of the standard bony and ligamentous landmarks used during primary TKR are lost due to the index implantation. However, as for primary TKR, restoration of the joint line, adequate limb axis correction and ligamentous stability are considered critical for the short- and long- term outcome of revision TKR. Navigation system might address this issue. MATERIAL AND METHODS. We are using an image-free system (ORTHOPILOT TM, AESCULAP, FRG) for routine implantation of primary TKR. The standard software was used for revision TKR. Registration of anatomic and cinematic data was performed with the index implant left in place. The components were then removed. New bone cuts as necessary were performed under the control of the navigation system. The system did not allow navigation for intra-medullary stem extensions and any bone filling which may have been required. This technique was used for 37 patients. The accuracy of implantation was assessed by measuring following angles on the post-operative long-leg radiographs: mechanical femoro-tibial angle, coronal orientation of the femoral component in comparison to the mechanical femoral axis, coronal orientation of the tibial component in comparison to the mechanical tibial axis, sagittal orientation of the tibial component in comparison to the proximal posterior tibial cortex. Individual analysis was performed as follows: one point was given for each fulfilled item, giving a maximal accuracy note of 4 points. Prosthesis implantation was considered as satisfactory when the accuracy note was 4 (all fulfilled items). The rate of globally satisfactory implanted prostheses and the rate of prostheses implanted within the desired range for each criterion were recorded. The results of the 37 navigated revision TKR were compared to 26 cases of revision TKR performed with conventional
Component and limb alignment are important considerations during Total Knee Arthroplasty (TKA). Three-dimensional positioning of TKA implants has an effect on implant loosening, polyethylene stresses, and gait. Furthermore, alignment, in conjunction with other implant and patient variables such as body mass index (BMI) influence osseous loading and failure rates. Fortunately, implant survivorship after TKA has been reported to be greater than 95% at 20 years, despite up to 28% of TKAs having component position greater than 3 degrees from neutral. How good are we at positioning TKA implants? Ritter, et al examined 6,070 primary TKAs and found that from 2–7 degrees of valgus, the failure rate was 0.5% for limb alignment. Importantly 28% of the TKAs were outside the 2–7 degree range in the hands of experienced surgeons. Clearly there is room for improvement in surgical technique, but this improvement must be (1) time efficient and cost effective; (2) have a low complication rate, and (3) be reproducible with a minimal learning curve. A number of technologies have been developed to help surgeons implant and position TKA components including
INTRODUCTION:. Despite clear clinical advantages Unicompartimetal Knee Replacement still remain an high demanding and less forgiving surgical procedure. Different Authors in literature pointed out how malalignment increases the rate of aseptic failure even more than in TKR. Computer-assisted surgery has been proposed to improve implant positioning in joint replacement surgery with no need of
D-dimer is one of the useful laboratory tests to evaluate the incidence of venous thromboembolism (VTE) after the total knee arthroplasty (TKA). The most recent guideline for the prophylaxis of VTE points out the surgical procedure itself is a major risk factor for developing VTE. Only a few literatures discuss the relationship of surgical procedures and the risk of venous thromboembolism. We therefore prospectively compare the difference of the perioperative plasma D-dimer levels between the patients undergoing navigation and convention TKA. Two hundred consecutive total knee arthroplasties were performed between September 2011 and March 2013. The patients were randomised according to their registration to the orthopaedic clinic. Ninety-six patients (100 knees) underwent a navigation-assisted TKA and ninety-four patients (100 knees) had a conventional TKA. No intramedullary violation was done in the navigation-assisted TKA, while the
INTRODUCTION. Although the most commonly used method of femoral component alignment in total knee arthroplasty (TKA) is an
Introduction. The efficacy and accuracy of computer navigation systems in total knee arthroplasty (TKA) have been proven in recent years. However, potential disadvantages associated with navigation systems, such as increased surgical time and registration errors, have been reported. Currently, we use a navigation system only for the femoral side. We use the conventional extramedullary guide system for the tibial side (hybrid navigation method) because we have increased the accuracy of tibial positioning in the coronal plane with the conventional system by considering the following key points. (1) Set the extramedullary alignment guide to avoid the rotational mismatch between the proximal part of the tibia and the ankle joint. (2) Insert the tibial component along the AP axis of the resected surface. (3) Remove the protruding bone at the antero-lateral edge of the tibia to obtain the flat, resected surface of the tibia. The purpose of this study was to determine the accuracy of the hybrid navigation method. Methods. We compared the postoperative alignment of 60 TKAs implanted using the conventional alignment guide system with 30 TKAs implanted using the hybrid image-free navigation method. The average age was 74.2 (range, 50 to 85) years in the conventional group and 73.6 (range, 51 to 84) years in the hybrid group. The
We report the results of using a combination of fixator-assisted nailing with lengthening over an intramedullary nail in patients with tibial deformity and shortening. Between 1997 and 2007, 13 tibiae in nine patients with a mean age of 25.4 years (17 to 34) were treated with a unilateral external fixator for acute correction of deformity, followed by lengthening over an intramedullary nail with a circular external fixator applied at the same operating session. At the end of the distraction period locking screws were inserted through the intramedullary nail and the external fixator was removed. The mean amount of lengthening was 5.9 cm (2 to 8). The mean time of external fixation was 90 days (38 to 265). The mean external fixation index was 15.8 days/cm (8.9 to 33.1) and the mean bone healing index was 38 days/cm (30 to 60). One patient developed an equinus deformity which responded to stretching and bracing. Another developed a drop foot due to a compartment syndrome, which was treated by fasciotomy. It recovered in three months. Two patients required bone grafting for poor callus formation. We conclude that the combination of fixator-assisted nailing with lengthening over an intramedullary nail can reduce the overall external fixation time and prevent fractures and deformity of the regenerated bone.