Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A Prospective Comparison of Patient Specific Instrumentation and Navigation in Unicompartimental Knee Replacement

International Society for Technology in Arthroplasty (ISTA)



Abstract

INTRODUCTION:

Despite clear clinical advantages Unicompartimetal Knee Replacement still remain an high demanding and less forgiving surgical procedure. Different Authors in literature pointed out how malalignment increases the rate of aseptic failure even more than in TKR. Computer-assisted surgery has been proposed to improve implant positioning in joint replacement surgery with no need of intramedullary guide despite no still proven clinical advantages. Likewise more recently Patient Specific Instrumentation (PSI) has been suggested, even in partial knee reconstruction, as a new technology capable of new advantages such as shorter surgical times and lower blood losses maintaining at least the same accuracy. Aim of the study is to present a prospective study comparing 2 groups of UKR s using either a computer assisted technique or a CT-based Patient Specific Instrumentation.

MATERIALS AND METHODS:

Since January 2010, 54 patients undergoing UKR because medial compartment arthritis were enrolled in the study prospectively. Before surgery patients were alternatively assigned to either computer-assisted alignment (group A) or patient specific instrumentation group (group B). In the group A (27 knees) the implant (Sigma, Depuy Orthopaedics Inc, Warsaw, Indiana, USA) was positioned using a CT-free computer assisted alignment system specifically created for UKR surgery (OrthoKey, Delaware, USA). In group B (27 knees) the implant (GMK Uni, Medacta, Castel San Pietro, Switzerland) was performed using a CT-based PSI technology (MyKnee, Medacta, Castel San Pietro, Switzerland). In both the groups all the implants were cemented and using always a fixed metal backed tibial component. The surgical time and complications were documented in all cases. Six months post-operatively the patients underwent to the same radiological investigation to determine the frontal femoral component angle (FFC), the frontal tibial component angle (FTC), the hip-knee-ankle angle (HKA) and the sagittal orientation (slope) of tibial/femoral components. The number and percentage of outliners for each parameter was determined. In addition the percentage of patients in each group with all 5 parameters within the desired range was calculated. Furthermore the 2 groups were clinically assessed using KSS and Functional score

RESULTS:

There were no differences in the clinical outcome. The mean surgical time was longer in the navigated group of a mean of 5.9 minutes without any statistical differences in complications. The mechanical axes, tibial slope the FTC angle were significantly better aligned in the navigated group. A statistically significant higher number of outliners was seen in the PSI group. The number of implants with all 5 radiological parameters aligned within the desired range was statistically higher in the navigated group. All the implants in the navigated group were correctly aligned in all the planned parameters.

Discussion:

To our knowledge this is the first prospective study in literature assessing navigation compared to PSI technique in UKR surgery. Despite a slight not significant longer surgical time in the navigated group, at a short follow-up the results could not demonstrate any clinical differences between the 2 technologies However according to their results the Authors indicate navigation as more helpful in UKR surgery compared to PSI technology in terms of accuracy.


*Email: