Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 267 - 271
1 Feb 2005
van Haaren EH Smit TH Phipps K Wuisman PIJM Blunn G Heyligers IC

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 821 - 824
1 Jun 2008
Board TN Rooney P Kay PR

In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an in vitro experiment to measure strain-related release of bone morphogenetic protein-7 (BMP-7) from fresh-frozen femoral head allograft. A total of 40 10 mm cubes of cancellous bone were cut from ten samples of fresh-frozen femoral head. The marrow was removed from the cubes and the baseline concentrations of BMP-7 were measured. Specimens from each femoral head were allocated to four groups and subjected to different compressive strains with a material testing machine, after which BMP-7 activity was reassessed. It was present in all groups. There was a linear increase of 102.1 pg/g (95% confidence interval 68.6 to 135.6) BMP-7 for each 10% increase in strain. At 80% strain the mean concentration of BMP-7 released (830.3 pg/g bone) was approximately four times that released at 20% strain. Activity of BMP-7 in fresh-frozen allograft has not previously been demonstrated. This study shows that the freezing and storage of femoral heads allows some maintenance of biological activity, and that impaction grafting provides a source of osteoinductive bone for remodelling. We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 17 - 17
1 Mar 2012
Busch VJ Klarenbeek RL Gardeniers JWM Schreurs BW
Full Access

Introduction. Total hip arthroplasties (THAs) in young patients are associated with high failure rates. We always use cemented total hip implants, however, in cases with acetabular bone stock loss we perform bone impaction grafting. Our purpose was to evaluate the outcome of 69 consecutive primary cemented total hips in patients younger than 30 years followed between 2 to 18 years. Methods. Between 1988 and 2004, 69 consecutive primary cemented THAs (mainly Exeters) were performed in 48 patients (32 women, 16 men) younger than thirty years. Average age at time of operation was 25 years (range, 16 to 29 years). Twenty-nine hips (42%) underwent acetabular bone impaction grafting because of acetabular bone loss. Mean follow-up was 10 years (range, 2 to 18 years). Revisions were determined, Harris Hip Score (HHS), and Oxford Hip Questionnaire Score (OHQS) were obtained and radiographs were analyzed. Survival was calculated using the Kaplan-Meier method. Results. No patients were lost to follow-up, but 3 patients (4 hips) died during follow-up, none of whom had underwent revision. Eight revisions were performed: 3 septic loosenings (6, 7, and 8 years post-operative) and 5 aseptic cup loosenings (2, 3, 4, 5, and 9 years post-operative). No stems were loose. The average HHS and OHQS at follow-up were 89 points (range, 55 to 100 points) and 19 points (range, 12 to 42 points), respectively. Using Kaplan-Meier analysis, the cumulative survival with revision for any reason as end point was 83% (95% CI, 69 - 92%) at 10 years. Excluding the infections, the survival rate was 90% (95% CI, 77 - 96%) with revision for aseptic loosening. The outcome of the patients who underwent acetabular bone impaction grafting was comparable to the primary cemented hips with a survival of 89% (95% CI, 62 - 97%) with revision for any reason as an end point. Excluding the infections, the survival rate was 95% (95% confidence interval, 72 - 99%) at ten years with revision for aseptic loosening as the end point. Conclusion. Primary cemented total hip arthroplasties in very young patients show satisfactory medium-term results, however, in cases with acetabular bone stock loss, a reconstruction with bone impaction grafting is advisable


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 25 - 25
1 Mar 2012
Gardeniers J Rijnen W Schreurs B Buma P Yamano K Slooff T
Full Access

Introduction. The different types of treatment for osteonecrosis of the femoral head have not led to a consensus about which treatment is best for the different stages. Particularly in the later stages of osteonecrosis, the disease still progresses to destruction of the femoral dome. The purpose of our study was to check the outcome of bone impaction grafting used for the head-preserving treatment of severe femoral head osteonecrosis. In order to preserve the femoral head, the sphericity and mechanical properties of the femoral dome must be contained and further collapse prevented. Methods. In this prospective study, we included 28 hips in 27 patients who had severe complaints of pain due to an extensive osteonecrotic lesion. The mean age of the patients was 33 years with a mean follow up time of 42 months. Results. Eight patients (29%) underwent a conversion to a total hip arthroplasty. The pre-operative Harris hip score for all cases was 55 points and the post-operative score was 79 points. Fifty-four percent of all cases showed a radiological and sixty-four percent a clinical success. The clinical success rate of Stage 2 was 73%, of early Stage 3, 67%, and late Stage 3, 45%. Conclusion. In conclusion, we can state that the bone impaction grafting technique shows promising results and is an excellent addition for the treatment arsenal for osteonecrosis of the femoral head


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 142 - 142
1 Jul 2014
Mohaddes M Malchau H Herberts P Johansson P Kärrholm J
Full Access

Summary Statement. We analysed impaction bone grafting used together with cemented or uncemented fixation in acetabular revision surgery. The overall risk for re-revision did not differ between the cemented and uncemented group. However, aseptic loosening was more common in the cemented group. Background. Several surgical techniques address bone defects in cup revision surgery. Bone impaction grafting, introduced more than thirty years ago, is a biologically and mechanically appealing method. The primary aim of this study was to evaluate the effect of bone impaction grafting when used with uncemented and cemented fixation in cup revision surgery. Uncemented cups resting on more than 50% host bone were used as controls. Patient and Methods. Cup fixation was studied in ninety hips (eighty-two patients), revised due to loosening between 1993 and 1997. There were fifty-three isolated cup and thirty-seven total revisions. Patients were followed for thirteen years using conventional radiography, radiostereometry (RSA), Harris Hip score and a pain questionnaire. Peroperatively the surgeon assessed the acetabular bone bed vitality. In hips where the cup was judged to rest on > 50% vital bone (group I, n=43), an uncemented cup was used. If the cup was resting on ≤ 50% living bone, uncemented (group IIa, n=21,) or cemented (group IIb, n=26) technique was chosen, according to the surgeon's preference. The mean age of patients at index revision was 61±12 years, 56% were females. The most common index diagnosis was primary osteoarthritis (n=45) followed by rheumatoid arthritis (n=10). Results. At thirteen years, acetabular component failure had necessitated a second revision in 6/7/8 hips in Groups I/IIa/IIb respectively. These re-revisions were performed 1–10 (mean 7.1) years after index revision. Moreover four cup / liner revisions were performed in hips with femoral loosening, not allowing further RSA measurements. These twenty-five hips were followed until re-revision. Deceased patients (n=21) and patients with deteriorating medical condition, not able to attend the follow-up (n=7), were censored in the survival statistics. Aseptic loosening was the most common reason of re-revision. However, in the uncemented groups (I/IIa), four cups were re-revised due to liner wear, osteolysis or instability. In the total study population, and up to two years, the median proximal migration was lowest in Group I followed by Group IIa and Group IIb (p≤0,006). At thirteen years the mean proximal migration was highest in Group IIb 1.29 mm (SD 1.23) followed by Group I 0.30 mm (SD 0.40) and Group IIa 0.22 mm (SD 0.22), p = 0.05. In cases subsequently re-revised because of loosening or with radiographically loose cups at the last follow-up, a higher proximal migration was observed compared to the non-revised and radiographically well-fixed group (up to seven years: p < 0.001; thirteen years: p=0.04). Discussion/Conclusion. We found an increased risk for rerevision in cases with less than 50% host bone-implant contact. These cups showed high early proximal migration, measured by RSA, indicating poor initial fixation. Rate of re-revision due to any reason did not differ between cemented and uncemented cups. The cemented group (IIb) had a higher risk of being re-revised due to aseptic loosening. Poor bone stock, use of small bone chips, inferior impaction technique, and no or restricted contact with living bone are probable reasons for failures when extensive bone grafting is needed


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 828 - 831
1 Jun 2006
Oakley J Kuiper JH

The role of bone-graft extenders in impaction revision surgery is becoming increasingly important. Tricalcium phosphate and hydroxyapatite have been shown to be both biocompatible and osteoconductive, yet many surgeons remain reluctant to use them. The difficulty in handling bone-graft extenders can be partly alleviated by using porous particles and adding clotted blood. In an in vitro model we measured the cohesive properties of various impaction graft mixes. Several factors were evaluated including the use of pure bone graft compared with mixes with extender, washing the bone and the addition of clotted blood. Our findings showed that pure allograft bone particles had significantly higher cohesion than when mixed with extender (p < 0.001). Washing had no effect on cohesion. The addition of clotted blood significantly increased the cohesion of both pure bone (p < 0.019) and mixes with pure bone and with porous graft extender (p < 0.044)


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 771 - 776
1 Jul 2004
Frei H Mitchell P Masri BA Duncan CP Oxland TR

We studied various aspects of graft impaction and penetration of cement in an experimental model. Cancellous bone was removed proximally and local diaphyseal lytic defects were simulated in six human cadaver femora. After impaction grafting the specimens were sectioned and prepared for histomorphometric analysis. The porosity of the graft was lowest in Gruen zone 4 (52%) and highest in Gruen zone 1 (76%). At the levels of Gruen zones 6 and 2 the entire cross-section was almost filled with cement. Cement sometimes reached the endosteal surface in other Gruen zones. The mean peak impaction forces exerted with the impactors were negatively correlated with the porosity of the graft


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 27 - 27
1 Aug 2012
Reissis Y Garcia E Hua J Blunn G
Full Access

Impaction allograft using cement is commonly used in revision surgery for filling bone defects and provides a load bearing interface. However, the variable regeneration of new bone within the defect makes clinical results inconsistent. Previous studies showed that addition of mesenchymal stem cells (MSCs) seeded on allograft can enhance bone formation in the defect site. The purpose of this study is to test the hypothesis that heat generated during cement polymerization will not affect viability of the human MSCs. The temperatures and durations were taken from previous studies that recorded the maximum temperature generated at the bone-cement interface. Temperatures of below 30 degrees Celsius to over 70 degrees Celsius have been detected and the duration of elevated temperature varies from 30 seconds to 5 minutes. In this study the viability of MSCs cultured at different temperatures was assessed. Ten groups were studied with three repeats (Table 1). A control group in which cells were cultures normally was used. Culture medium was heated to the required temperature and added to the cells for the required duration. The metabolism of MSCs was measured using the alamar Blue assay, cell viability was analysed using Trypan Blue and cell apoptosis and necrosis were tested using Annexin V and Propidium Iodide staining. Results showed that cell metabolism was not affected with temperatures up to 48 degrees Celsius for periods of 150s, while cells in the 58 degrees Celsius group eventually died (Fig. 1). Similar results were shown in Trypan Blue analysis (Fig. 2). When comparing the group of cells heated to 48 degrees Celsius for 150s with the control group for apoptosis and necrosis, no significant difference was observed. The study suggests that human MSCs seeded to allograft can be exposed to temperatures up to 48 degrees Celsius for 150s, which covers many of the situations when cement is used. This indicates that the addition of mesenchymal stem cells to cemented impaction grafting can be carried out without detrimental effects on the cells and that this may increase osteointegration


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 118 - 124
1 Jan 1999
Brewster NT Gillespie WJ Howie CR Madabhushi SPG Usmani AS Fairbairn DR

In impaction grafting of contained bone defects after revision joint arthroplasty the graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. Bone mills in current use produce a distribution of particle sizes more uniform than is desirable for maximising resistance to shear stresses. We have performed experiments in vitro using morsellised allograft bone from the femoral head which have shown that its mechanical properties improve with increasing normal load and with increasing shear strains (strain hardening). The mechanical strength also increases with increasing compaction energy, and with the addition of bioglass particles to make good the deficiency in small and very small fragments. Donor femoral heads may be milled while frozen without affecting the profile of the particle size. Osteoporotic femoral heads provide a similar grading of sizes, although fewer particles are obtained from each specimen. Our findings have implications for current practice and for the future development of materials and techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 246 - 253
1 Feb 2008
Coathup M Smith N Kingsley C Buckland T Dattani R Ascroft GP Blunn G

An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p > 0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p < 0.05). The results for the area of new bone formation demonstrated no significant differences (p > 0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p > 0.05) and percentage ApaPore-bone contact (p > 0.05).

The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability.

We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture.

Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem.

Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score.

All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect.

Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined.

The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1285 - 1291
1 Sep 2005
Whiteside RA Jakob RP Wyss UP Mainil-Varlet P

Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes.

Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed.