There is continued concern over complication rates (20–30% of cases) in locked proximal humeral plating. The most common sequelae of this is screw penetration of the
This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device. The traditional technique resulted in posterior and inferior translation of the
Glenoid and
To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis. CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The
Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the
Tear pattern and tendon involvement are risk factors for the development of a pseudoparalytic shoulder. However, some patients have similar tendon involvement but significantly different active forward flexion. In these cases, it remains unclear why some patients suffer from pseudoparalysis and others with the same tear pattern show good active range of motion. Moment arms (MA) and force vectors of the RC and the deltoid muscle play an important role in the muscular equilibrium to stabilize the glenohumeral joint. Biomechanical and clinical analyses were conducted calculating different MA-ratios of the RC and the deltoid muscle using computer rigid body simulation and a retrospective radiographic investigation of two cohorts with and without pseudoparalysis and massive RC tears. Idealized MAs were represented by two spheres concentric to the joints centre of rotation either spanning to the
Latarjet procedure (transfer of coracoid process to the anterior glenoid rim) has been widely used for severe anterior shoulder instability. The purpose of the present study was to investigate the intraarticular stress distribution after this procedure to clarify the pathomechanism of its postoperative complications. CT-DICOM data of the contralateral healthy shoulder in 10 patients with unilateral anterior shoulder instability (9 males and 1 female, age: 17–49) was used for the present study. Three-dimensional finite element models of the glenohumeral joint was developed using software, Mechanical Finder (RCCM, Japan). In each shoulder, a 25% bony defect was created in the anterior glenoid cavity, where coracoid process was transferred using two half-threaded screws. The arm position was determined as 0-degree and 90-degree abduction. While medial margin of the scapula was completely constrained, a standard compressive load (50 N) toward the centre of the glenoid was applied to the lateral wall of the greater tuberosity. A tensile load (20N) was also applied to the tip of coracoid process along the direction of conjoint tendon. Then, elastic analysis was performed, and the distribution pattern of Drucker-Prager equivalent stress was investigated in each model. The proximal half of the coracoid represented significantly lower equivalent stress than the distal half (p < 0.05). In particular, the lowest mean equivalent stress was seen in its proximal-medial-superficial part. On the other hand, a high stress concentration newly appeared in the antero-inferior aspect of the
Abstract. Objectives. A fibril reinforced multiphasic cartilage model was developed to improve the understanding of the depth-dependent cartilage internal structure and its through thickness biomechanical response. The heterogeneous model of cartilage was validated against full-field strain measurement obtained via Digital Image Correlation (DIC) during free swelling experiments. Methods. Hemi-cylindrical cartilage cores of 5mm diameter were obtained from porcine femoral condyles and
To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the
Objectives. All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. Materials and Methods. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human
Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the
The medial periosteal hinge plays a key role in fractures of the head of the humerus, offering mechanical support during and after reduction and maintaining perfusion of the head by the vessels in the posteromedial periosteum. We have investigated the biomechanical properties of the medial periosteum in fractures of the proximal humerus using a standard model in 20 fresh-frozen cadaver specimens comparable in age, gender and bone mineral density. After creating the fracture, we displaced the
Osteoporosis is a worldwide disease with a high prevalence in elderly population; it results in bone loss and decreased bone strength that lead to low-energy fractures. Since antiresorptive treatments could lead to long-term adverse effects, the ERC BOOST project aims to propose a biomimetic 3D-printed scaffold reproducing the architecture and chemistry of healthy bone. In this study, the structural parameters of healthy bone were studied in order to reproduce them through 3D printing; furthermore, structural and mechanical differences between healthy and osteoporotic (OP) bones were assessed. Healthy and OP
Background. While total shoulder arthroplasty (TSA) is a generally successful procedure, glenoid loosening remains a common complication. Though the occurrence of loosening was related to patient-specific factors, biomechanical factors related to implant features may also affect the fixation of the glenoid component, in particular increased glenohumeral mismatch that could result in eccentric loads and translations. In this study, a novel test setup was used to quantify glenohumeral pressures for different motion patterns after TSA. Methods. Six cadaveric human shoulders were implanted with total shoulder replacements (Exactech, Inc., USA) and subjected to cyclic internal-external, flexion-extension and abduction-adduction rotations in a passive motion testing apparatus. The system was coupled to a pressure sensor system (Tekscan, Inc., USA) to acquire joint loads and to a Zebris system (Zebris Medical, GmbH, Germany) to measure joint kinematics. The specimens were subjected to a total of 2160 cycles and peak pressures were compared for each motion pattern. Results. It was shown that during abduction the contact area between the
Introduction. The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique (Cement-and-screws) based on a commercial plate, with a reduced number of screws compared to the standard, and with the injection of a beta-TCP additivated acrylic bone cement (Cal-Cemex, Tecres, Italy). The focus was on a four-fragment fracture of the proximal humerus, in combination with a bone defect. For comparison, also a standard technique, based on a commercial system of plate and screws was tested (Screws-only). Materials and Methods. Six pairs of cadaveric humeri were obtained through an ethically-approved donation program. The humeri were osteotomized to simulate a reproducible four-fragment fracture with the aid of a dedicated jig. Preparation included the simulation of a bone defect in the
Introduction. Glenoid loosening, still a main complication for shoulder arthroplasty, was suggested to be related implant design, surgical aspects, and also bone quality. However, typical studies of fixation do not account for heterogeneity in bone morphology and density which were suggested to affect fixation failure. In this study, a combination of cyclic rocking horse tests on cadaver specimens and microCT-based finite element (microFE) analysis of specimens of a wide range of bone density were used to evaluate the effects of periprosthetic bone quality on the risks of loosening of anatomical keeled or pegged glenoid implants. Methods. Six pairs of cadaveric scapulae, scanned with a quantitative computer tomography (QCT) scanner to calculate bone mineral density (BMD), were implanted with either cemented anatomical pegged or keeled glenoid components and tested under constant glenohumeral load while a
Background. Osteoporotic fracture fixation in the proximal humerus remains a critical challenge. While the biomechanical benefits of screw augmentation with bone cement are established, minimising the cement volume may help control any risk of extravasation and reduce surgical procedure time. Previous experimental studies suggest that it may be sufficient to only augment the screws at the sites of the lowest bone quality. However, adequately testing this hypothesis in vitro is not feasible. Methods. This study systematically evaluated the 64 possible strategies for augmenting six screws in the
Introduction. Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Materials and Methods. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal). Results. Medial loads produced higher bone tissue stresses when loading was applied along the implant axis. This was more prominent in the lower density bone, causing more than 3 times higher stresses in the highest region for both implants. Bone tissue stresses were also shown to be higher in the low density specimen, especially in the distal zone. The maximum bone tissue stress ratio for low/high density bone reached 4.4 below Implant 1 and 2.2 below Implant 2, occurring both with a medially-directed load. For both implants, the highest bone tissue stresses were predicted in the distal region than in the proximal region, with larger distal-to-proximal stress ratios below Implant 1 than Implant 2 (3.8 and 1.7, respectively). Discussion. Our µFE analyses show that the implant anchorage design clearly influences load transfer to the periprosthetic bone. The long fenestrated cage screw of Implant 1 showed more direct distal stress transfer, which may lead to stress shielding in the proximal region, in a larger extent than Implant 2 which tends to distribute loads more evenly. Furthermore, periprosthetic bone quality appears to be an important factor for load transfer, causing dramatic changes due to different loading condition and implant geometry. These findings will help further improve anchorage design for stemless
The morphology of the proximal part of the humerus varies largely. Morphometric features characterizing the three-dimensional geometry of the proximal humerus have revealed a wide difference within individuals. These parameters include head size, radius of curvature, inclination angle, retroversion angle, offsets and neck-shaft angle. Different implant designs have been adapted so as to make provision for these anatomical variations. However, the optimal design criteria are yet to be established. Implant design is one of the main factors determining the success of Total Shoulder Arthroplasty (TSA) since slight modifications in the implant anatomy could have significant biomechanical effects. Therefore, this study investigates the three-dimensional morphometric parameters of the South African proximal humerus which will serve as a basis for designing a new Total Shoulder Prosthesis for the South African population. Sixteen South African (SA) fresh cadaveric humeri (8 left, 8 right; 8 paired) were used in this study. The data consisted of 6 men and 2 women with ages ranging from 32 to 55 years (43.13 ±8.51). The humeri were scanned using a Computer Tomography (CT) scanner. The Digital Imaging and Communications in Medicine (DICOM) files from the CT data were imported into medical modelling software, MIMICS for reconstruction. The 3D reconstructed model of the humeri as an STL file was used for further processing. The STL data were generated as a cloud of points in a CAD software, SolidWorks. These were then remodeled by defining the detailed Referential Geometric Entities (RGEs) describing the anatomical characteristics. Anatomical reference points were defined for the anatomical neck plane, the epiphyseal sphere and the metaphyseal cylinder. Also, axes were defined which comprises of the