Abstract. Objectives. To analyse the costs and benefits of sending femoral head specimens for histopathological analysis and whether our practice had changed since the original study five years ago. Methods. The cohort definition was patients who had both undergone hip hemiarthroplasties (HHAs) and had femoral head specimens sent for histopathological analysis at our tertiary care institution from 2013 to 2016. Retrospective review of clinical and electronic notes was performed on these patients for history of malignancy, histopathological diagnosis of femoral head, indication for histopathological examination and radiological studies. The total number of HHAs performed at the centre and the costs involved in analysing each femoral head specimen were identified. Results. A total of 805 HHAs were performed at the centre. We identified 56 femoral head specimens from 56 patients (6.96%) that were sent for histopathological analysis after HHA. 29 patients (51.79%) had a known history of malignancy. Three femoral head specimens (10.34%) were
Objectives. This study aimed to evaluate the
Summary Statement. Atypical femoral fractures consist of a thin fracture line extending through the lateral cortex. The adjacent bone is undergoing resorption and mechanical abrasion and is often replaced with woven bone. The mechanical environment seems to inhibit healing. Background. The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself might provide important clues. So far only one case describing the
Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and
Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology. Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their
Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and
Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive pull-out strength was demonstrated 0–28 days, with a dip at 14 days increasing to 11.3N maximum.
The primary aim of this study was to compare the clinical outcomes of osteoid osteoma (OO) between the group of patients with the presence of nidus on biopsy samples from radiofrequency ablation (RFA) with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO reflecting our experience as a tertiary orthopaedic oncology centre. We retrospectively reviewed 88 consecutive patients diagnosed with OO treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). Median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%) while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Pain improvement in the patient group with nidus in
To evaluate the therapeutic effect of Pulsed Electromagnetic Field (PEMF) in the treatment of meniscal tears in the avascular region. Seventy-two twelve-week-old male Sprague-Dawley rats with full-thickness longitudinal medial meniscal tears in the avascular region were divided into 3 groups: control group (G. con. ), treated with classic signal PEMF (G. classic. ), and high slew rate signal PEMF(G. HSR. ). The HSR signal has the same pulse and burst frequencies as the classic signal, but with a higher slew rate. Macroscopic observation and
To test and evaluate the effectiveness of local injection of autologous fat-derived mesenchymal stem cells (MSCs) into fracture site to prevent non-union in a clinically relevant model. 5 male Wistar rats underwent the same surgical procedure of inducing non-union. A mid-shaft tibial osteotomy was made with 1mm non-critical gap. Periosteum was stripped around the two fracture ends. Then, the fracture was fixed by ante-grade intramedullary nail. The non-critical gap was maintained by a spacer with minimal effect on the healing surface area. At the same surgical time, subcutaneous fat was collected from the ipsilateral inguinal region and stem cells were isolated and cultured in vitro. Within three weeks postoperatively, the number of expanded stem cells reached 5×10. 6. and were injected into the fracture site. Healing was followed up for 8 weeks and the quality was measured by serial x-rays, microCT, mechanical testing and
In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents. A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×10. 6. CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application. All the animals from the infected group were culture positive during the first revision surgery (mean 3×10. 5. CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and
Successful application of patient derived cells to engineer vascularized bone grafts is often hampered by low cell numbers and lengthy in vitro expansion. With sound induced morphogenesis (SIM), local cell density enhancement was shown to improve microvasculature formation at lower cell concentration than conventional methods [1]. SIM takes advantage of hydrodynamic forces that act on cells to arrange them within a hydrogel. Following, we are evaluating the potential of cell-hydrogel biografts with high local cell density to improve the therapeutic efficacy in clinical scenarios such as anastomosis or bone formation within non-union fractures. To assess anastomosis, human umbilical vein endothelial cells (HUVEC) and human mesenchymal stromal cells (MSC) were mixed at a 1:1 ratio in PEG-based or Dextran-based hydrogels at a final concentration of 2×10. 6. cells×mL. -1. For ectopic bone formation, MSC were resuspended in PEG-based hydrogels at 2×10. 6. or 5×10. 6. cells×mL. -1. , with or without BMP-2. Cells were assembled into distinct patterns at a frequency of 60 Hz. Four biografts of 4 × 9 mm. 2. were implanted at the back of nude mice (total of 7 animals) and harvested after 2 or 8 weeks. Explants were fixed and imaged as whole constructs or embedded in paraffin for
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion,
Glutamate regulates the expression of apoptosis-related genes and triggers the apoptosis of fibroblasts in rotator cuff tendons. Subacromial bursitis is always accompanied by symptomatic rotator cuff tear (RCT). However, no study has been reported on the presence of glutamate in subacromial bursa and on its involvement of shoulder pain in patients who had RCT. The purposes of this study were to determine whether the glutamate expression in subacromial bursa is associated with the presence of RCT and with the severity of shoulder pain accompanying RCT. Subacromial bursal tissues were harvested from patients who underwent arthroscopic rotator cuff tendon repair or glenoid labral repair with intact rotator cuff tendon. Glutamate tissue concentrations were measured, using a glutamate assay kit. Expressions of glutamate and its receptors in subacromial bursae were
Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute. Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties.
Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT,
Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model. A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and
Rotator cuff tears are common, with failure rates of up to 94% for large and massive tears. 1. For such tears, reattachment of the musculotendinous unit back to bone is problematic, and any possible tendon-bone repair heals through scar tissue rather than the specially adapted native enthesis. We aim to develop and characterise a novel soft-hard tissue connector device, specific to repairing/bridging the tendon-bone injury in significant rotator cuff tears, employing decellularised animal bone partially demineralised at one end for soft tissue continuation. Optimisation samples of 15×10×5mm. 3. , trialled as separate cancellous and cortical bone samples, were cut from porcine femoral condyles and shafts, respectively. Samples underwent 1-week progressive stepwise decellularisation and a partial demineralisation process of half wax embedding and acid bathing. Characterisations were performed
The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic,
Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging,