header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

INCREASING LOCAL CELL DENSITY BY SOUND TO ENGINEER VASCULARIZED BONE CONSTRUCTS

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 2 of 3.



Abstract

Successful application of patient derived cells to engineer vascularized bone grafts is often hampered by low cell numbers and lengthy in vitro expansion. With sound induced morphogenesis (SIM), local cell density enhancement was shown to improve microvasculature formation at lower cell concentration than conventional methods [1]. SIM takes advantage of hydrodynamic forces that act on cells to arrange them within a hydrogel. Following, we are evaluating the potential of cell-hydrogel biografts with high local cell density to improve the therapeutic efficacy in clinical scenarios such as anastomosis or bone formation within non-union fractures.

To assess anastomosis, human umbilical vein endothelial cells (HUVEC) and human mesenchymal stromal cells (MSC) were mixed at a 1:1 ratio in PEG-based or Dextran-based hydrogels at a final concentration of 2×106 cells×mL-1. For ectopic bone formation, MSC were resuspended in PEG-based hydrogels at 2×106 or 5×106 cells×mL-1, with or without BMP-2. Cells were assembled into distinct patterns at a frequency of 60 Hz. Four biografts of 4 × 9 mm2 were implanted at the back of nude mice (total of 7 animals) and harvested after 2 or 8 weeks. Explants were fixed and imaged as whole constructs or embedded in paraffin for histological analysis.

Upon explantation, microscopic evaluation indicated that HUVEC were retained within the PEG-hydrogel after 2 weeks and formed a pre-vascular network. In the second study, ectopic bone formation was more pronounced in areas of higher local cell density based on visual inspection. Ongoing experiments are further characterizing bone formation by micro-CT and histological evaluation.

Our results indicate that local cell density enhancement by sound requires a lower initial cell concentration than conventional, static seeding methods to achieve comparable microvasculature structures or local osteogenesis.


Email: