This paper aims to analyze the kinetics of the over-ground wheel-type body weight supporting system (BWS); tendency changes of low extremity joint moment (hip, knee, ankle), 3 axis accelerations of a trunk, cadence and gait velocity as weight bearing level changes. 15 subjects (11 males, 4 females, age:23.63.5, height:170.65.1cm, weight:69.0210.75kg) who had no history of surgery participated. 6 levels (0%, 10%, 20%, 30%, 40% and 50%) of BWS were given to subjects at self-selected gait velocity and kinetic data was calculated using a motion capture system, Vicon® (Vicon, UK).Objective
Method
Introduction. One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect. Methods. Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin
Introduction. Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Materials and Methods. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented
Introduction. Early hip OA may be attributed to smaller coverage of the femoral head leading to higher loads per unit area. We hypothesize that tight hamstrings may contribute to increased loads per unit area on the femoral head during gait. When a patient has tight hamstrings they cannot flex their pelvis in a normal fashion which may result in smaller coverage of the femoral head (Figure 1). This study aimed to determine if subjects with tight hamstrings can improve femoral head coverage during gait after a stretching intervention. Methods. Nine healthy subjects with tight hamstrings (popliteal angle>25°) were recruited and consented for this IRB approved study. Gait analysis with 58 reflective markers were placed by palpation on anatomical landmarks of the torso and lower extremities. Ten optoelectronic cameras (Qualisys, Gothenburg, Sweden) and three
Outcome measures are an essential element of our industry: comparing a novel procedure against an established one requires a reliable set of metrics that are comprehensible to both the technologist and the layman. We surmised that a detailed assessment of function before and after knee arthroplasty, combined with a detailed set of personal goals would enable us to test the hypothesis that less invasive joint and ligament preserving operations could be demonstrated to be more successful, and cost effective. We asked the simple question: how well can people walk following arthroplasty, and can we measure this?. Materials and methods. Using a treadmill, instrumented with
Introduction. Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections. Methods. Using a six-camera motion capture system, synchronized
Background. There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty. Methods. Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four
Background. Previous in vivo fluoroscopic studies have documented that subjects having a PS TKA experience a more posterior condylar contact position at full extension, a high incidence of reverse axial rotation and mid flexion instability. More recently, a PS TKA was designed with a Gradually Reducing Radius (Gradius) curved condylar geometry to offer patients greater mid flexion stability while reducing the incidence of reverse axial rotation and maintaining posterior condylar rollback. Therefore, the objective of this study was to assess the in vivo kinematics for subjects implanted with a Gradius curved condylar geometry to determine if these subjects experience an advantage over previously designed TKA. Methods. In vivo kinematics for 30 clinically successful patients all having a Gradius designed PS fixed bearing TKA with a symmetric tibia were assessed using mobile fluoroscopy. All of the subjects were scored to be clinically successful. In vivo kinematics were determined using a 3D-2D registration during three weight-bearing activities: deep-knee-bend (DKB), gait, and ramp down (RD). Flexion measurements were recorded using a digital goniometer while ground reaction forces were collected using a
Background. There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty. Methods. Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four
The MediShoe (Promedics Orthopaedics Ltd, Glasgow) is a specific post-operative foot orthosis used by post-operative foot and ankle patients designed to protect fixations, wounds and maximise comfort. The use of rigid-soled shoes has been said to alter joint loading within the knee and with the popular use of the MediShoe at our centre in post operative foot and ankle surgery patients, it is important to ascertain whether this is also true. An analysis of the knee gait kinetics in healthy subjects wearing the MediShoe was carried out. Ten healthy subjects were investigated in a gait lab both during normal gait (control) and then with one shoe orthosis worn.
The purpose of this study was to compare lower limb joint mechanics in patients who underwent a total knee arthroplasty (TKA) with either a posterior stabilised (PS) or with a medial pivot (MP) implant to healthy controls (CTRL) during stair ascent and descent tasks. Six PS (age: 67.2±1.5 years, BMI: 31.0±3.2 kg/m2) and 11 MP (age: 62.3±6.0 years, BMI: 29.7±3.9 kg/m2) TKA patients matched to 10 healthy CTRL participants (age: 65.6±5.5 years, BMI: 27.2±5.0 kg/m2) were included in the study. TKA patients went through 3D motion analysis after unilateral TKA with either a MP (11.7±3.4 months post-surgery) or PS (10.1±3.4 months post-surgery) implant performed using either a subvastus or medial parapatellar approach. Kinematic and kinetic data was collected using a 10-camera Vicon and two portable Kistler
The number of hip arthroplasty procedures has steadily increased in the United States over the last decade [Wolford, et. al, 2015]. This trend will continue as this treatment is the most effective approach in relieving pain, improving mobility, reducing fall risk and improving the quality of life in patients with end-stage osteoarthritis. The effectiveness of recovery can be impacted by factors such as access to postoperative physical therapy regimens. During the recovery period, it is important for therapists to be guided in their therapeutic decision making by accurate data concerning the patient's performance on a variety of measures. This project is designed to map the gait recovery curves of individuals who have undergone unilateral hip arthroplasty. To date, eight individuals (4 females, mean age 64.9, SD 11.1) have participated in the study. Five of the patients were treated by traditional press-fit Accolade II implants (Stryker, Mahwah, NJ USA) through a direct anterior approach THA and the other three has been treated by using DAA THA and using neck preserving Minihip. TM. short stem implant (Corin Ltd., Cirencester, UK). Each participant walked on an instrumented treadmill as a self-selected speed for three minutes pre-surgery. Post-surgery data collections occurred at three and six weeks, and three and six months and employed the same treadmill speed as used prior to surgery. Bilateral lower limb kinematic data was collected with a 12 camera motion capture system Vicon® (Oxford Metrics, Oxford, UK) using reflective markers attached to the hip, knee, ankle, heel and toe.
Hip arthroplasty is commonly used as the final treatment approach for patients experiencing end-stage osteoarthritis. The number of these patients needing this treatment is expected to grow significantly by year 2030 to more than 572000 patients [Kurtz et al., 2007]. One of the important outcomes of hip arthroplasty is to improve patients' functions postoperatively. The evaluation of walking can provide a wealth of information regarding the efficiency of this treatment in improving a patient's mobility. Assessing the kinematic features of gait collected with a motion capture system combined with the aid of a motor-driven treadmill provides the advantage of enabling the evaluator to collect precise information about a large number of strides in a short period of time. Body segment kinematics (i.e. joint motion) are most often represented in the form of time series data with the abscissa (X axis) representing time and the ordinate (y axis) representing the motion of a particular joint. Although a great deal of information can be gained from the analyses of time series data, non-linear analyses tools can provide an additional and important dimension to a clinician's assessment of gait recovery. In this study eight patients (4 females, mean age 64.9, SD 11.1) have currently been assessed after unilateral hip arthroplasty. All surgeries were conducted by direct anterior approach by using two different approaches; three of the patients were treated by bone preservation technique and received Minihip short stem implant (Corin Ltd., Cirencester, UK) and five were treated by using a press fit stem implant Accolade II (Stryker, Mahwah, NJ USA). Patients performed a single three-minute trial of walking on a motor-driven treadmill at a self-selected pace. Using a 12 camera system, bilateral lower limb joint motion was collected prior to the surgery, at three and six weeks and at three and 6 months after the surgery. Depending upon the patient's preferred walking pace; between 40 and 45 strides were collected during each trial. Kinematic data obtained from
Introduction. The sit-to-stand (STS) movement is a physically demanding activity of daily living and is performed more than 50 times per day in healthy adults. Several studies have shown that the normal ‘screw-home’ mechanism is altered after total knee arthroplasty (TKA). However, these studies have been criticized due to their limitations of the movement being non-weight-bearing or atypical daily activity (lunge maneuver). We analyzed TKA subjects during a STS activity to determine if the internal-external rotation of their TKA knees differed from the knees of control subjects. Materials and Methods. Six TKA subjects (3 M, 3 F) participated following institutional review board approval and informed consent. One subject had bilateral knee replacement. Surgery was performed by the same surgeon using the same type of implant (6 posterior-stabilized, 1 cruciate-retaining). The control group included eight healthy subjects (6 M, 2 F). Retro-reflective markers were placed over bony landmarks of the torso, pelvis, and lower extremities, and arrays of four markers were attached to the thighs and shanks using elastic wrap. A digitizing pointer was used to create virtual markers at the anterior superior iliac spines. A nine camera video-based opto-electronic system (Qualisys) was used for 3D motion capture. Subjects were barefoot and seated on a 46 cm armless bench with one foot on each
Normal human locomotion entails a rather narrow base of support (BoS), of around 12cm at normal walking speeds. This relatively narrow gait requires good balance, and is beneficial, as it minimises the adduction moment at the knee. Normal knees have a slightly oblique joint line, and slight varus, which allow the normal human to walk rapidly with a narrow BoS. Patients with increased varus and secondary osteoarthritis have a broader BoS, which exacerbates the excessive load, making walking painful and ungainly. We wondered if there would be a difference between the base of support of patients whose knee kinematics had been preserved, by retaining the native jointline obliquity and the acl, in comparison with those whose alignment had been altered to a mechanically correct ‘neutral’ alignment. Materials and Methods. Of 201 patients measured following knee arthroplasty, 31 unicondylar patients and 35 total knee patients, with a single primary arthroplasty, and no co-morbidities, over 1 year post-operatively were identified. Two control groups of controls, a younger cohort of 112 people and 17 in an age matched older cohort. All operations were performed by the same surgeon. The total knees were cruciate retaining devices, inserted in mechanical alignment, and the unicondylar knees were inserted retaining the native alignment and joint-line obliquity. The gait of all subjects was analysed on an instrumented, calibrated treadmill with underlying
With the growing number of individuals with asymptomatic cam-type deformities, elevated alpha angles alone do not always explain clinical signs of femoroacetabular impingement (FAI). Differences in additional anatomical parameters may affect hip joint mechanics, altering the pathomechanical process resulting in symptomatic FAI. The purpose was to examine the association between anatomical hip joint parameters and kinematics and kinetics variables, during level walking. Fifty participants (m = 46, f = 4; age = 34 ± 7 years; BMI = 26 ± 4 kg/m²) underwent CT imaging and were diagnosed as either: symptomatic (15), if they showed a cam deformity and clinical signs; asymptomatic (19), if they showed a cam deformity, but no clinical signs; or control (16), if they showed no cam deformity and no clinical signs. Each participant's CT data was measured for: axial and radial alpha angles, femoral head-neck offset, femoral neck-shaft angle, medial proximal femoral angle, femoral torsion, acetabular version, and centre-edge angle. Participants performed level walking trials, which were recorded using a ten-camera motion capture system (Vicon MX-13, Oxford, UK) and two
Introduction. In a previous study of subjects with no history of lower extremity injury or disease we found a linear relationship between body weight and peak hip, knee, and ankle joint forces during the stance phase of gait. To investigate the effect of total knee arthroplasty (TKA) on forces in the operated joints as well as the other joints of the lower extremities, we tested TKA subjects during gait and performed inverse dynamics analyses of the results. Materials and Methods. TKA subjects (3 M, 1 F; 58 ± 5 years; body mass index range (BMI): 26–36 kg/m. 2. ) participated in this investigation following institutional review board approval and informed consent. One subject had bilateral knee replacement. Each patient received the same implant design (4 PS, 1 CR). Data from previously tested control subjects (8 M, 4 F; 26 ± 4 years; BMI: 20–36 kg/m. 2. ) were used for comparison. Retro-reflective markers were placed over bony landmarks of each subject. A nine-camera video-based opto-electronic system was used for 3D motion capture as subjects walked barefoot at a self-selected speed on a 10 meter walkway instrumented with three
Introduction:. Direct anterior approach (DAA) total hip arthroplasty (THA) has been reported to be a muscle sparing approach. The purpose of this study was to compare gait patterns over time between patients undergoing THA via DAA and posterior approach (PA). Methods:. 22 patients with unilateral primary hip osteoarthritis were prospectively enrolled and gait analysis was performed prior to, at 6 months and 1 year following THA via DAA and PA. All PA THA's were performed by a single surgeon from January 2008 to February 2009; all DAA THA's were performed by the same surgeon at the same institution from January 2010 to May 2011 with similar design of uncemented acetabular, femoral components and bearing surfaces. Reflective markers were placed on the lower extremity and motion data collected using six infrared cameras (Qtrac, Qualysis). Ground reaction forces were recorded with a multicomponent
Introduction. Although Total Knee Arthroplasty (TKA) has been shown to correct abnormal frontal plane knee biomechanics, little is known about this effect beyond 6 months. The purpose of this study was to compare sequentially the knee adduction moment during level-walking before and after TKA in varus knees. We hypothesized that adduction moment would diminish after TKA proportionate to the tibio-femoral realignment in degrees. Methods. Fifteen patients (17 TKA's) with varus knees were prospectively enrolled and gait analysis performed prior to, 6 months and 1 year following TKA. Reflective markers were placed on the lower extremity and motion data collected using six infrared cameras (Qtrac, Qualysis). Ground reaction forces were recorded with a multicomponent
Telemetric knee implants have provided invaluable insight into the forces occurring in the knee during various activities. However, due to the high amount of cost involved only a few of them have been developed. Mathematical modeling of the knee provides an alternative that can be easily applied to study high number of patients. However, in order to ensure accuracy these models need to be validated with in vivo force data. Previously, mathematical models have been developed and validated to study only specific activities. Therefore, the objective of this study was compare the knee force predictions from the same model with that obtained using telemetry for multiple activities. Kinematics of a telemetric patient was collected using fluoroscopy and 2D to 3D image registration for gait, deep knee bend (DKB), chair rise, step up and step down activities. Along with telemetric forces obtained from the implant, synchronized ground reaction forces (GRF) were also collected from a