The aim of this retrospective study was to evaluate the failure rate among different fixation devices for undisplaced fracture neck of femur. All 52 patients with Garden I and II hip fractures who underwent surgery in a teaching hospital in London from January 2007 to June 2012 were included. Electronic patient records were accessed to collect the patient data. There were 52% females and the mean age of patients was 70 years. Thirty patients had cannulated screws, 18 – dynamic hip screw (DHS) with de-rotation screw and 4 had DHS alone. Initial results showed that 36% patients had re-operation. 7(77%) had total hip replacement and 1(11%) had metal work removal. The reason for revision was
Hip fractures frequently occur in elderly patients with osteoporosis and are rapidly increasing in prevalence owing to an increase in the elderly population and social activities. We experienced several recent presentations of TFNA nails failed through proximal locking aperture which requires significant revision surgery in often highly co-morbid patient population. The study was done by retrospective data collection from 2013 to 2023 of all the hip fractures which had been fixed with Cephalomedullary nails to review and compare Gamma (2013–2017) and TFNA (2017–2023) failure rates and the timing of the failures. Infected and Elective revision to Arthroplasty cases were excluded. The results are 1034 cases had been included, 784 fixed with TFNA and 250 cases fixed Gamma nails. Out of the 784 patients fixed with TFNA, 19 fixation failed (2.45%). Out of the 250 cases fixed with Gamma nails, 15 fixation failed (6%). Mean days for
Gunshot-induced fractures of the proximal femur typically present with severe comminution and bone loss. These fractures may also be associated with local damage to soft tissue, neurovascular structures and injuries to abdominal organs. The aim was to evaluate the outcomes of civilian gunshot injuries to the proximal femur at a major trauma center in South Africa. A retrospective review of all patients who sustained gunshot-induced proximal femur fractures between January 2014 and December 2017 was performed. Patients with gunshot injuries involving the hip joint, neck of femur or pertrochanteric fractures were included. Patient demographics, clinical- treatment and outcome data were collected. Results are reported as appropriate given the distribution of continuous data or as frequencies and counts. Our study included 78 patients who sustained 79 gunshot-induced proximal femur fractures. The mean age of patients was 31 ± 112, and the majority of patients were male (93.6%). Pertrochantenteric fractures were the most common injuries encountered (73.4%). Treatment included cephalomedullary nail (60.8%), arthrotomy and internal fixation (16.4%) and interfragmentary fixation with cannulated screws (6%). One case of complete neck of femur fracture had
The aim of this study is to analyse the radiological outcomes and predictors of avascular necrosis following 2-hole DHS in Garden I and II neck of femur fractures in patients more than 60 years with a minimum follow up of one year. We retrospectively reviewed 51 consecutive patients aged more than 60 years who underwent DHS fixation for Garden I and II fractures. Demographics, fracture classification, time to surgery, pre-operative AMTS, preoperative posterior tilt angle, quality of reduction, pre and post-operative haemoglobin(hb), creatinine and comorbidities were analysed for correlation with AVN using Chi-Square test, Independent Sample and paired t test. There were 40 (78.4%) females and the mean age of the cohort was 77 years. 28 and 23 were Garden I and II NOF fractures respectively. Union was observed in all our patients except one(kappa =1). 12/51(23.5%) developed AVN of the femoral head. Statistically significant higher incidence of AVN was noted in patients with a pre-op tilt angle > 200 (p = 0.006). The mean drop in Hb was higher in patients who developed AVN (21.5 g/L) versus the non-AVN group (15.9 g/L) (p = 0.001). There was no difference in AVN rates with respect to laterality, mean time to surgery, pre-op AMTS and Charlson comorbidity index. 4/52 (7.6%) had re-operations (one hardware prominence, two conversions to arthroplasty, one
Ligament reconstruction following multi-ligamentous knee injuries involves graft fixation in bone tunnels using interference screws (IS) or cortical suspensory systems. Risks of IS fixation include graft laceration, cortical fractures, prominent hardware, and inability to adjust tensioning once secured. Closed loop suspensory (CLS) fixation offers an alternative with fewer graft failures and improved graft-to-tunnel incorporation. However, graft tensioning cannot be modified to accommodate errors in tunnel length evaluation. Adjustable loop suspensory (ALS) devices (i.e., Smith & Nephew Ultrabutton) address these concerns and also offer the ability to sequentially tighten each graft, as needed. However, ALS devices may lead to increased graft displacement compared to CLS devices. Therefore, this study aims to report outcomes in a large clinical cohort of patients using both IS and CLS fixation. A retrospective review of radiographic, clinical, and patient-reported outcomes following ligament reconstruction from a Level 1 trauma centre was completed. Eligible patients were identified via electronic medical records using ICD-10 codes. Inclusion criteria were patients 18 years or older undergoing ACL, PCL, MCL, and/or LCL reconstruction between January 2018 and 2020 using IS and/or CLS fixation, with a minimum of six-month post-operative follow-up. Exclusion criteria were follow-up less than six months, incomplete radiographic imaging, and age less than 18 years. Knee dislocations (KD) were classified using the Schenck Classification. The primary outcome measure was implant removal rate. Secondary outcomes were revision surgery rate, deep infection rate, radiographic
Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on
Introduction. Distal femoral and proximal tibial osteotomies are effective procedures to treat degenerative disease of the knee joint. Previously described techniques advocate the use of bone graft to promote healing at the osteotomy site. In this present study a novel technique which utilises the osteogenic potential of the cambial periosteal layer to promote healing “from the outside in” is described. Materials and Methods. A retrospective analysis of a consecutive single-surgeon series of 23 open wedge osteotomies around the knee was performed. The median age of the patients was 37 years (range 17–51 years). The aetiology of the deformities included primary genu valgum (8/23), fracture malunion (4/23), multiple epiphyseal dysplasia (4/23), genu varum (2/23), hypophosphataemic rickets (1/23), primary osteoarthritis (1/23), inflammatory arthropathy (1/23), post-polio syndrome (1/23), and pseudoachondroplasia (1/23). Results. There were two cases lost to follow-up with a median follow-up period 17 months (range 1–32 months). Union was achieved in all cases, with 1/23 requiring revision for early
Traditionally, open reduction and internal fixation (ORIF) and hemiarthroplasty (HA) have been the surgical treatments of choice for displaced proximal humerus fractures (PHF) despite high rates of
Proximal humeral fractures occur frequently, with fixed angle locking plates often being used for their treatment. However, the failure rate of this fixation is high, ranging between 10 and 35%. Numerous variables are thought to affect the performance of the fixation used, including the length and configuration of screws used and the plate position. However, there is currently limited quantitative evidence to support concepts for optimal fixation. The variations in surgical techniques and human anatomy make biomechanical testing prohibitive for such investigations. Therefore, a finite element osteosynthesis test kit has been developed and validated - SystemFix. The aim of this study was to quantify the effect of variations in screw length, configuration and plate position on predicted failure risk of PHILOS plate fixation for unstable proximal humerus fractures using the test kit. Twenty-six low-density humerus models were selected and osteotomized to create a malreduced unstable three-part fracture AO/OTA 11-B3.2 with medial comminution which was virtually fixed with the PHILOS plate. In turn, four different screw lengths, twelve different screw configurations and five plate positions were simulated. Each time, three physiological loading cases were modelled, with an established finite element analysis methodology utilized to evaluate average peri-screw bone strain, this measure has been previously demonstrated to predict experimental fatigue
Although the vast majority of fractures of the proximal femur will heal with well-done internal
Although the vast majority of fractures of the proximal femur will heal with well-done internal
Although the vast majority of fractures of the proximal femur will heal with well-done internal
Introduction. Cementless acetabular fixation in total hip replacement (THA) is reliable and has been the fixation method of choice in the United States for decades. While revision for failure of osseointegration or early loosening is relatively rare, recurrent dislocation remains a leading cause of early revision. Novel acetabular implants and those offered by smaller companies often lack constrained or dual mobility liners, which may result in revision of well-fixed, well-positioned cups in cases of recurrent dislocation. The purpose of this study was to compare outcomes of THA with three different acetabular cups with differing fixation surfaces. One hydroxyapatite (HA)-coated cup (Trident, Stryker, Kalamazoo, MI, USA) offered dual mobility or constrained liner options. The other cups were a novel highly porous cup (Restoris PST, Stryker, Kalamazoo, MI, USA), and a Calcium Phosphate (CaP)-coated cup (Trinity, Corin, Cirincester, UK), neither of which offered dual mobility or constrained options at the time of investigation. Endpoints of interest were: clinical and radiographic outcomes including evidence of osseointegration, overall reoperations, reoperations for acetabular
Total knee replacements are being more commonly performed in active younger and obese patients. Fifteen-year survivorship studies demonstrate that cemented total knee replacements have excellent survivorship, with reports of 85 to 97%. Cemented knee arthroplasties are doomed to failure due to loss of cement-bone interlock over time. Inferior survivorship occurs in younger patients and obese patients who would be expected to place increased stress on the bone-cement interfaces. Roentgen stereophotogrammetric analysis (RSA) studies have indicated that cementless fixation should perform better than cemented fixation. However, cementless fixation for total knee replacement has not gained widespread utilization due to the plethora of poor results reported in early series. The poor initial results with cementless total knee replacement have occurred due to poor implant designs such as cobalt chrome porous interfaces, poor initial tibial component stability, lack of continuous porous coating, poor polyethylene, and use of metal-backed patellae. I have used cementless fixation for total knee replacements for young, active, and heavy patients since 1986 when durability over 20 years is desirable. My series of over 1,300 cementless TKAs represents about 20% of the 6,500 total knees I have performed from 1986 to 2017. I have seen initial failures in my series due to the use of metal-backed patellae with thin polyethylene, older generation polyethylene, and use of screws with the tibial components which provide access to the metaphyseal bone for polyethylene wear debris. Overall implant
Instability after total hip arthroplasty is the primary cause for revision surgery and is a frequent complication following revision surgery for any reason (Bozic et al, JBJS 2009). Surgical management of the unstable hip has not been uniformly successful with the best results occurring in those hips in which an identifiable cause of instability can be determined (Daly & Morrey, JBJS 1992). It was these sobering findings that led to the development of and increased use of constrained acetabular components. While the results of revision surgery for instability using constrained components have been encouraging (Shapiro, Padgett, Sculco J Arthroplasty 2003) with a re-dislocation rate of less than 3%, reoperation for other reasons have noted to increase with time. The commonly used tripolar configuration has been susceptible to bearing damage at both the inner and outer bearing surface by the nature of the constrained mechanism (Shah, Padgett, Wright, J Arthroplasty 2009). In addition, we have noted instances of
Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or metallic augmentation of the bone deficiency. Shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complications and revisions. Hemiarthroplasty has limited benefit for pain relief and function especially if eccentric glenoid wear exists. Bone loss with >15 degrees of retroversion likely requires version correction include bone-grafting, augmented glenoid components, or reverse total shoulder replacement. Asymmetric reaming may improve version but is limited to 15 degrees of version correction in order to preserve subchondral bone and glenoid bone vault depth. Bone-grafting of glenoid wear and defects has had mixed results with graft-related complications, periprosthetic radiolucent lines, and glenoid component
Instability after total hip arthroplasty is the primary cause for revision surgery and is a frequent complication following revision surgery for any reason (Bozic et al, JBJS 2009). Surgical management of the unstable hip has not been uniformly successful with the best results occurring in those hips in which an identifiable cause of instability can be determined (Daly & Morrey, JBJS 1992). It was these sobering findings that lead to the development of and increased use of constrained acetabular components. While the results of revision surgery for instability using constrained components have been encouraging (Shapiro, Padgett, Sculco, J Arthroplasty 2003) with a re-dislocation rate of less than 3%, reoperation for other reasons have noted to increase with time. The commonly used tripolar configuration has been susceptible to bearing damage at both the inner and outer bearing surface by the nature of the constrained mechanism (Shah, Padgett, Wright, J Arthroplasty 2009). In addition, we have noted instances of
The Fixion expandable nailing system provides an intramedullary fracture fixation solution without the need for locking screws. Proponents of this system have demonstrated shorter surgery times with rapid fracture healing, but several centres have reported suboptimal results with loss of fixation. This is the largest comparative series to be reported to date. We compared outcomes between 50 consecutive diaphyseal tibial fractures treated with a Fixion device at our institution to an age, sex and fracture configuration matched series of 57 fractures at a neighbouring hospital treated with a conventional interlocked intramedullary nail. Minimum follow up time was 2 years. Operating time was significantly reduced in the Fixion group (mean 61 minutes, range 20–99) compared to the interlocked group (88 minutes, 52–93), p< 0.00001. The union rate was no different between the Fixion group (93.9%) and the interlocked group (96.5%), p=0.527. Time to clinical and radiological union was significantly faster in the Fixion group (median 85 days, range 42–243) compared to the interlocked group (119, 70–362), p< 0.0001. The overall reoperation rate was lower in the Fixion series (24.5% vs 38.6%, p=0.121), although the majority of reoperations in the interlocked group were more minor, for screw removal. 3 Fixion nails were revised for
To identify ideal screw placement for internal fixation of intra capsular fracture neck of femur to avoid
Aim. Review causes of anchor