Advertisement for orthosearch.org.uk
Results 1 - 20 of 562
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 100 - 100
4 Apr 2023
Lu V Zhang J Zhou A Thahir A Krkovic M
Full Access

Fracture related infections (FRI) are debilitating complications of musculoskeletal trauma surgery that can result in permanent functional loss or amputation. This study aims to determine risk factors associated with FRI treatment failure, allowing clinicians to optimise them prior to treatment and identify patients at higher risk. A major trauma centre database was retrospectively reviewed over a six-year period. Of the 102 patients identified with a FRI (66 male, 36 female), 29.4% (n=30) had acute infections (onset <6 weeks post-injury), 34.3% (n=35) had an open fracture. Open fractures were classified using Gustilo-Anderson (GA) classification (type 2:n=6, type 3A:n=16, type 3B:n=10, type 3C:n=3). Patients with periprosthetic infections of the hip and knee joint, those without prior fracture fixation, soft tissue infections, diabetic foot ulcers, pressure sore infections, patients who died within one month of injury, <12 months follow-up were excluded. FRI treatment failure was defined as either infection recurrence, non-union, or amputation. Lifestyle, clinical, and intra-operative data were documented via retrospective review of medical records. Factors with a P-value of p<0.05 in univariate analysis were included in a stepwise multivariate logistic regression model. FRI treatment failure was encountered in 35.3% (n=36). The most common FRI site was the femoral shaft (16.7%; n=17), and 15.7% (n=16) presented with signs of systemic sepsis. 20.6% (n=21) had recurrent infection, 9.8% (n=10) had non-union, and 4.9% (n=5) required an amputation. The mean age at injury was 49.71 years old. Regarding cardiovascular risk factors, 37 patients were current smokers (36.3%), 31 patients were diabetics (30.4%), and 32 patients (31.4%) were obese (BMI≥30.0). Average follow-up time was 2.37 (range: 1.04-5.14) years. Risk factors for FRI treatment failure were BMI>30, GA type 3c, and implant retention. Given that FRI treatment in 35.3% (36/102) ended up in failure, clinicians need to take into account the predictive variables analysed in this study, and implement a multidisciplinary team approach to optimise these factors. This study could aid clinicians to redirect efforts to improve high risk patient management, and prompt future studies to trial adjuvant technologies for patients at higher risk of failure


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 5 - 5
11 Apr 2023
Mischler D Tenisch L Schader J Dauwe J Gueorguiev B Windolf M Varga P
Full Access

Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk. Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were biomechanically tested until cyclic cut-out failure [2]. Failure risks of the planned and the post-OP configurations were predicted using a validated sample-specific finite element (FE) simulation approach [2] and correlated with the experimental outcomes. Small deviations were found for the instrumented screw trajectories compared to the planned configuration in the proximal-distal (0.3±1.3º) and anterior-posterior directions (-1.7±1.8º), and for screw tip to joint distances (-0.3±1.1 mm). Significantly higher failure risk was predicted for the post-OP compared to the planned configurations (p<0.01) via FE. When incorporating the instrumentation inaccuracies, the biomechanical results could be predicted well with FE (R. 2. =0.70). Despite the high instrumentation accuracy achieved using sophisticated subject-specific 3D-printed guides, even minor deviations from the pre-OP plan significantly increased the FE-predicted risk of failure. This underlines the importance of intraoperative guiding technology [3] in tandem with careful pre-OP planning to assist surgeons to achieve optimal outcomes. Acknowledgements. This study was performed with the assistance of the AO Foundation via the AOTRAUMA Network


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 72 - 72
4 Apr 2023
Silva-Henao J Pahr DH Reisinger A
Full Access

Primary implant stability is critical for osseointegration and subsequent implant success. Small displacements on the screw/bone interface are necessary for implant success, however, larger displacements can propagate cracks and break anchorage points which causes the screw to fail. Limited information is available on the progressive degradation of stability of an implanted bone screw since most published research is based on monotonic, quasi-static loading [1]. This study aims to address this gap in knowledge. A total of 100 implanted trabecular screws were tested using multi-axial loading test set-up. Screws were loaded in cycles with the applied force increasing 1N in each load cycle. In every load cycle, Peak forces, displacements, and stiffness degradation (calculated in the unloading half of the cycle) where recorded. 10 different loading configurations where tested. The damage vs displacement shows a total displacement at the point of failure between 0.3 and 0.4 mm while an initial stiffness reduction close to 40%. It is also shown that at a displacement of ~0.1 mm, the initial stiffness of every sample had degraded by 20% (or more) meaning that half of the allowable degradation occurred in the first 25-30% of the total displacement. Other studies on screw overloading [1] suggests similar results to our concerning initial stiffness degradation at the end of the loading cycle. Our results also show that the initial stiffness degrades faster with relatively small deformations suggesting that the failure point of an implanted screw might occur before the common failure definition (pull-out force, for example). These results are of great significance since primary implant stability is better explained by the stiffness of the construct than by its failure point


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 71 - 71
14 Nov 2024
Karjalainen L Ylitalo A Lähdesmäki M Reito A Repo J
Full Access

Introduction. Cephalomedullary nailing (CMN) is commonly used for unstable pertrochanteric fracture. CMN is relatively safe method although various complications can potentially occur needing revision surgery. Commonly used salvage procedures such as renailing, hemiarthroplasty, conservative treatment or total hip arthroplasty (THA) are viable alternatives. The aim was to investigate the rate of THA after CMN and evaluate the performance on conversion total hip arthroplasty (cTHA) after failure of CMN. Method. Collected data included patients from two orthopedic centers. Data consisted of all cTHAs after CMN between 2014-2020 and primary cementless THA operations between 2013-2023. Primary THA operations were treated as a control group where Oxford Hip Score (OHS) was the main compared variable. Result. From 2398 proximal femoral hip procedures 1667 CMN procedures were included. Altogether 46/1667 (2.8%) CMNs later received THA. Indications for THA after CMN failure were 13 (28.3%) cut-outs, nine (19.6%) cut-throughs, eight (17.4%) nail breakages, seven (15.2%) post traumatic arthrosis, seven (15.2%) nonunions, one (2.2%) malunion and one (2.2%) collum screw withdrawal. Mean (SD) time to complication after CMN operation is 5.9 (6.8) months. Mean (SD) time from nail procedure to THA was 10.4 (12.0) months. Total complication rate for cTHA after CMN was 17.4%. Reported complications were infection with seven (15.2%) cases and one (2.2%) nerve damage. Mean (SD) time to cTHA complication was 3.6 (6.1) months. One-sample T-test showed OHS to be significantly better (P<.001) for primary cementless THA compared to cTHA after one year. Conclusion. Altogether 2.8% of CMN were converted to THA. Nearly half (47.8%) of the cTHA procedures were due to CMN cut-out or cut-through. OHS was significantly better in primary cementless THA compared to cTHA. Prosthetic joint infection was the most frequent complication related to cTHA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 80 - 80
2 Jan 2024
Mischler D Windolf M Gueorguiev B Varga P
Full Access

Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses in vivo in preclinical or clinical studies. Acknowledgements: This study was supported by the AO Foundation via the AOTRAUMA Network (Grant No.: AR2021_03)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 46 - 46
1 Nov 2021
Luk J Bozynski C Stoker A Stannard J Teixeiro E Cook J
Full Access

Introduction and Objective. Osteochondral allograft (OCA) transplants have been used clinically for more than 40 years as a surgical option for joint restoration, particularly for young and active patients. While immediate graft rejection responses have not been documented, it is believed that the host's immunological responses may directly impact OCA viability, incorporation, integrity, and survival, and therefore, it is of the utmost importance to further optimize OCA transplantation outcomes. The influences of sub-rejection immune responses on OCA transplantation failures have not been fully elucidated therefore aimed to further characterize cellular features of OCA failures using immunohistochemistry (IHC) in our continued hopes for the successful optimization of this valuable surgical procedure. Materials and Methods. With IRB approval, osteochondral tissues that were resected from the knee, hip, and ankle of patients undergoing standard-of-care revision surgeries (N=23) to treat OCA failures and tissues from unused portions of OCAs (N=7) that would otherwise be discarded were recovered. Subjective histologic assessments were performed on hematoxylin and eosin-stained and toluidine blue-stained sections by a pathologist who was blinded to patient demographics, outcomes data, and tissue source. IHC for CD3, CD8, and CD20 were performed to further characterize the and allow for subjective assessment of relevant immune responses. Results. Eleven (48%) of the failed OCAs had aggregates of CD3+, CD8+, and CD20+ lymphocytes around small blood vessels in the bone marrow spaces and adipose/collagenous tissue of the allograft, while the non-implanted healthy control OCA tissues did not show any evidence of inflammation. The remaining failed OCAs (52%) did not show a similar pattern of T- and B-cell infiltrates around blood vessels. Other histologic abnormalities associated with failed OCAs included avascular necrosis, subchondral micro and macro fractures, subchondral collapse, bacterial infection, and/or articular cartilage erosion or delamination. Conclusions. The results from the present study support this possibility in that mixed aggregates of CD3+, CD8+, and CD20+ lymphocytes were observed around small blood vessels in approximately half of the failed OCAs. This potentially cytotoxic immune response may have contributed to the lack of functional survival of the OCA noted in these cases, and warrants further investigation as a possible failure mechanism that may be mitigated using post-transplantation management strategies


Bone & Joint Research
Vol. 5, Issue 2 | Pages 61 - 65
1 Feb 2016
Scott EEF Hamilton DF Wallace RJ Muir AY Simpson AHRW

Objectives. Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results. The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion. Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. doi: 10.1302/2046-3758.52.2000484


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 55 - 55
2 Jan 2024
Stroobant L Jacobs E Arnout N Van Onsem S Burssens A Victor J
Full Access

7–20 % of the patients with a total knee arthroplasty (TKA) are dissatisfied without an indication for revision. Therapeutic options for this patient population with mostly a lack of quadriceps strength are limited. The purpose of this study is to evaluate the effect of six weeks low load resistance training with blood flow restriction (BFR) on the clinical outcome in these unhappy TKA patients. Thirty-one unhappy TKA patients (of the scheduled fifty patients) without mechanical failure were included in this prospective study since 2022. The patients participate in a supervised resistance training combined with BFR, two times a week during nine weeks. Patients were evaluated by the Knee Osteoarthritis Outcome Score (KOOS), Knee Society Score: satisfaction (KSSs) and the Pain Catastrophizing Scale (PCS). Functionality was tested using the Six Minute Walk Test (6MWT) and the 30-Second Chair Stand Test (30CST). Follow-up took place at six weeks, three months and six months after the start. Six weeks training with BFR provided statistically significant improvements in all the KOOS subscales compared to the baseline, especially for symptoms (55.1 (±15.4) versus 48.0 (±16.5); p<0.001), activities in daily living (50.3 (±21.1) versus 43.7 (±17.2); p<0.00) and quality of life (24.6 (±18.5) versus 17.3 (±13.0); p<0.001). The PCS reduced from 27.4 (±11.0) to 23.2 (±11.4) at six weeks (p<0.01), whereas the KSSs increased from 11.8 (±6.5) to 14.9 (±7.6) (p=0.021). Both the 6MWT and the 30CST improved statistically significant from respectively 319.7 (±15.0) to 341.6m (±106.5) (p<0.01) and 8.6 (±3.9) to 9.3 times (±4.5) (p<0.01). Blood flow restriction appears to enhance the quality of life and functional performance of unhappy TKA patients. Based on these preliminary results, BFR seems to be a promising and valuable alternative for these TKA patients with limited therapeutic options


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 120 - 120
4 Apr 2023
Joumah A Cowling P
Full Access

Though retear rates following rotator cuff repair are well established, we set out to review current literature to determine when early retears occurred (defined as <12m following surgery), and examine which pre- and post-operative variables might affect outcome.

Pubmed, Medline, and CINAHL were searched for literature published from 2011 to 2021 using specific search terms. The inclusion criteria were studies reporting retear rates within 12 months of initial surgical repair. Exclusionary criteria were studies that included partial thickness tears, and studies that did not use imaging modalities within 12 months to assess for retears. PRISMA guidelines were followed, identifying a total of 10 papers.

A combined total of 3372 shoulders included (Mean age 56 −67 years). The most common modality used to identify early retears were ultrasound scan and MRI. 6 of the 10 studies completed imaging at 0-3 months, 6 studies imaged at 3-6 months and 6 studies imaged at 6-12 months. Across all studies, there was a 17% early retear rate (574 patients). Of these, 13% occurred by 3 months, whilst the peak for retears occurred at 3-6 months (82%) and 5% occurred at 6-12 months. The risk of retear was higher in larger tears and extensive tendon degeneration. All studies apart from one documented a return to work/sport at 6 months post-operatively. Postoperative rehabilitation does not appear to alter retear rate, although data is limited with only 1 of 10 studies allowing active range of movement before 6 weeks. Retorn tendons had poorer functional outcomes compared to intact tendons at 12m following initial repair.

The majority of early retears occur at 3-6 months and this time period should be prioritised both in rehabilitation protocols and future research. Age, tear size, and tendon degeneration were found to influence likelihood of early retears.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 48 - 48
1 Mar 2021
Tavana S Freedman B Baxan N Hansen U Newell N
Full Access

Abstract. Objectives. Back pain will be experienced by 70–85% of all people at some point in their lives and is linked with intervertebral disc (IVD) degeneration. The aim of this study was to 1) compare 3D internal strains in degenerate and non-degenerate human IVD under axial compression and 2) to investigate whether there is a correlation between strain patterns and failure locations. Methods. 9.4T MR images were obtained of ten human lumbar IVD. Five were classed as degenerate (Pfirrmann = 3.6 ± 0.3) and five were classed as non-degenerate (Pfirrmann = 2.0 ± 0.2). MR Images were acquired before applying load (unloaded), after 1 kN of axial compression, and after compression to failure using a T2-weighted RARE sequence (resolution = 90 µm). Digital Volume Correlation was then used to quantify 3D strains within the IVDs, and failure locations were determined from analysis of the failure MRIs. Results. Average of axial strains were higher (p<0.05) in the degenerate samples compared to the non-degenerate (−3.4 vs-5.2%, respectively), particularly in the posterior and lateral annulus (−6.2 vs −3.6%, and −5.6 vs −3.5%, respectively). Maximum 3D compressive strains were higher (p<0.05) in the posterior annulus and nucleus regions of the degenerate discs compared to non-degenerate (−9.8 vs −6.2%, and −7.7 vs −5.5%, respectively). In all samples peak tensile and shear strains were observed close to the endplates. All samples failed through the endplates with fractures in the nucleus region in all non-degenerate samples, and fractures in the lateral annulus regions in all degenerate samples. Conclusion. Degeneration caused significant changes to strain distributions within IVDs, particularly at the lateral and posterior AF regions. A shift from endplate failure in the nucleus to the annulus region was observed which was also seen in peak axial internal strains demonstrating a possible correlation between internal IVD strains, and endplate failure locations. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective. Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice. Materials and Methods. This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months. Results. At 12 months five patients (12%) suffered a postoperative lateral wall fracture, while in 37 patients (88%) the lateral femoral wall remained intact. The mean preoperative LWT of patients with a postoperative lateral wall fracture was 18.04 mm (SD ± 1.58) compared to 26.22mm (SD ± 5.93) in the group without a lateral wall fracture. All patients with post-operative lateral femoral wall fracture belong to 31A2 group, while 78.4% of the patients that did not develop post-operative lateral femoral wall fracture belong to 31A1 group. Eighty percent of patients in group (A) experienced shortening, collapse, shaft medialization and varus deformity. The mean Harris hip score of group (A) was 39.60 at 3 months and 65.67 at 6 months postoperatively, while that of group (B) was 80.75 and 90.65 at 3 and 6 months respectively, denoting a statistically significant difference (P<0.001). Treatment failure meriting a revision surgery was 40 % in group (A) and 8% in group (B) denoting a statistically significant difference (p<0.001). The cut-off point of LWT below which there is a high chance of post-operative lateral wall fracture when fixed with DHS is 19.6mm. This was shown on the receiver operating curve (ROC) by plotting the sensitivity against the 100 % specificity with a set 95% confidence interval 0.721 – 0.954. When lateral wall thickness was at 19.6 mm, the sensitivity was 100% and specificity was 81.8%. The area under the curve (AUC) was 0.838, which was statistically significant (P = 0.015). Conclusions. Preoperative measurement of LWT in elderly patients with intertrochanteric hip fractures is decisive. The cut off point for postoperative lateral wall fracture according to our study is 19.6 mm; hence, intramedullary fixation has to be considered in this situation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 99 - 99
1 Mar 2021
Procter P Hulsart-Billstrom G Insley G Pujari-Palmer M Wenner D Engqvist H Larsson S
Full Access

An ex vivo biomechanical test model for evaluating a novel bone adhesive has been developed. However, at day 1 in the in vivo pilot, high blood flow forced the study to halt until the solution presented here was developed. The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The ex vivo study produced mean peak tensile loads of 7.63N SD 2.39N (n=8, 4 rats 8 femurs). Whilst the mean peak tensile loads in the day 1 in vivo pilot were significantly lower 1.53N SD1.57 (n=8, 6 rats 8 femurs − 4 used for other tests). The subsequent layered adhesive bone cores showed a mean peak tensile force of 6.79N SD =3.13 (n=8, 4 rats 8 femurs). 7/8 failed at the bone to glue interface. This is the first successful demonstration of bonding bone in vivo for this class of adhesives. The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved in vivo at 24 hours that were comparable with the ex vivo results previously demonstrated. This method supports application in further animal series and over longer time scales. Biomaterials researchers that intend to use gel or paste like preparations in distal femur defects in the rat should be aware of the risks of biomaterial displacement by local blood flow


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 92 - 92
1 Aug 2012
Joyce T Langton D Lord J Nargol A
Full Access

Background. The worldwide withdrawal of the DePuy Articular Surface Replacement (ASR) device in both its resurfacing and total hip replacement (THR) form on 26 August 2010, after 93,000 were implanted worldwide, has had major implications. The 2010 National Joint Registry for England and Wales quoted figures of 12-13% failure at five years; however these figures may be an underestimate. Patients and methods. In 2004 a single surgeon prospective study of the ASR bearing surface was undertaken. Presented are the Adverse Reaction to Metal Debris (ARMD) failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Acetabular cup position in vivo was determined using EBRA software. Mean follow up was 52 months (24-81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated ‘failure’ if the patient had undergone revision surgery or if the patient had been listed for revision. A second survival analysis was carried out with a failure defined as a serum cobalt concentration > 7microgrammes/L (MHRA guideline from MDA-2010-069). Full explant analysis was carried out for retrieved prostheses. Results. There were 505 ASR hips in total (418 resurfacings and 87 THRs). 657 metal ion samples were available at the time of writing including 152 repeats. Survival analysis using revision/listed for revision as end point (at 6 years): ASR resurfacing: 26.1% failure; ASR THR: 55.5% failure. Survival using ion analysis (at 5 years): ASR resurfacing: 50.1% failure; ASR THR: 66.5% failure. The median (range) volumetric wear rate of failed prostheses was 8.23mm3/year (0.51-95.5). Failure and high ion concentrations are linked to acetabular cup size, anteversion and inclination. Increased failure rates in THRs were due to wear at the taper junction of head and stem. Conclusion. Design flaws in the ASR have led to excessive wear and consequently catastrophic failure rates secondary to ARMD


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 8 - 8
1 Apr 2015
Russo L Ferguson K Winter A MacGregor M Holt G
Full Access

Introduction. Acute kidney injury is a recognised post-operative complication in primary joint replacement. Recently it has been demonstrated that antibiotic regimen can significantly impact on the proportion of patients who develop acute kidney impairment post-operatively. Within our unit an increased rate of acute kidney injury had been noted post-operatively over the last 5 years. This increase followed the introduction of a rapid recovery protocol for arthroplasty patients. Our aim was determine whether we could identify a causative factor or those who were at increased risk of post-operative renal impairment. Methods. Data were collected for 413 patients initially retrospectively but continued prospectively. Univariable and multivariable analysis was performed to determine any causative factors. The primary increase was 150% increase in baseline creatinine, but as some authors recognise an increase in 125% this was also analysed. Results. Within the 12 month period studied 23.3% of patients developed acute kidney injury, with an increase of 125% of their baseline creatinine. 8.23% of patients developed an increase of 150% in their creatinine levels. Age, previous renal failure and the pre-operative use of an ACE inhibitor were found to be statistically higher in the renal failure group. The uni-variable analysis also demonstrated that patients who received a small volume of post-operative intravenous fluids had a lower rate of renal failure than those who received no fluids (10% vs. 23%; p = 0.04). The multivariable regression analysis demonstrated that age was the only statistically significant positive predictive factor in developing renal failure. Antibiotic regimen had no effect. Discussion. Renal impairment has significant impact on patient morbidity and post-operative management. It increases the length of stay, and may potentially require more invasive therapy. We have demonstrated that the identified risk factors are non-modifiable but that a gentamicin and teicoplanin regimen was not an implicated causative factor


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 41 - 41
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract. Objective. To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro periprosthetic fracture. Methods. Three groups of six composite femurs were implanted with a collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Prior to each trial, the distances between anterior (ACC) and posterior (PCC) collar and the calcar were measured. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording identified when collar to calcar contact (CCC) occurred. The ACC and PCC were compared between trials where the CCC was and was not achieved. Regression estimated the odds of failing to achieve CCC for a given ACC or PCC. Results. CCC was achieved prior to fracture in all cases in group one, 50% in group two and 0% in group three. The median (range) ACC for those trials where CCC was achieved was 0.40 (0.00, 3.37) mm versus 6.15 (3.06 to 6.88) mm, where CCC was not achieved (p <0.01). The median (range) PCC for those trials where CCC was achieved was 0.85 (0.00 to 3.71) mm versus 5.97 (2.23 to 7.46) mm, where CCC was not achieved (p <0.01). Binomial logistic regression estimated risk of failure to obtain CCC increased 3.8 fold (95% confidence interval 1.6 to 30.2, p <0.05) for each millimetre of PCC. Conclusions. Increased separation between collar and calcar reduced the likelihood of calcar collar contact during a simulated periprosthetic fracture of the femur. Surgeons should aim to achieve a calcar-collar distance of less than 1mm following implantation to ensure calcar collar contact during periprosthetic femoral fracture and to reduce the risk of fracture. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 47 - 47
1 Nov 2018
Keohane D Power F Cullen E O'Neill A Masterson E
Full Access

Total knee arthroplasty (TKA) is a common orthopaedic procedure with over 1,500 done in 2016 in Ireland alone. 96% of all TKAs are due to pain in the knee associated with osteoarthritis. According to the UK National Joint Registry (NJR), there is a 0.47%, 1.81%, 2.63% and 4.34% probability risk of undergoing a revision TKA within one, three, five and ten years respectively post-index surgery. A variety of reasons for failure of TKA have been described in the literature including infection, aseptic loosening, pain, instability, implant wear, mal-alignment, osteolysis, dislocation, peri-prosthetic fracture and implant fracture. The NexGen Posterior Stabilised Fixed has NJR revision rates of 0.44%, 1.61% and 2.54% at years one, three and five respectively. A retrospective review was carried out of 350 NexGen TKAs that were performed directly by, or under the supervision of, a fellowship trained arthroplasty surgeon in a dedicated orthopaedic hospital between April 2013 and December 2015. 26 (7.4%) of these were revised as of 31 December 2017. Three were for septic arthritis with the remaining 23 (6.6%) for aseptic loosening. Patients typically started to experience symptoms of medial tibial pain with supra-patellar swelling from a combination of effusion and synovial thickening at 12–24 months. Inflammatory markers were normal in all cases. Radiographs of symptomatic knee replacements showed bone loss on the medial tibia with a tilt of the tibial component into a varus alignment. The high number of revisions of this particular prosthetic has led to its use being discontinued at this centre


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 748 - 752
1 Jul 2002
Berlemann U Ferguson SJ Nolte L Heini PF

Vertebroplasty, which is the percutaneous injection of bone cement into vertebral bodies has recently been used to treat painful osteoporotic compression fractures. Early clinical results have been encouraging, but very little is known about the consequences of augmentation with cement for the adjacent, non-augmented level. We therefore measured the overall failure, strength and structural stiffness of paired osteoporotic two-vertebra functional spine units (FSUs). One FSU of each pair was augmented with polymethyl-methacrylate bone cement in the caudal vertebra, while the other served as an untreated control. Compared with the controls, the ultimate failure load for FSUs treated by injection of cement was lower. The geometric mean treated/untreated ratio of failure load was 0.81, with 95% confidence limits from 0.70 to 0.92, (p < 0.01). There was no significant difference in overall FSU stiffness. For treated FSUs, there was a trend towards lower failure loads with increased filling with cement (r. 2. = 0.262, p = 0.13). The current practice of maximum filling with cement to restore the stiffness and strength of a vertebral body may provoke fractures in adjacent, non-augmented vertebrae. Further investigation is required to determine an optimal protocol for augmentation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 91 - 91
1 Aug 2012
Joyce T Lord J Langton D Nargol A
Full Access

Introduction. Total hip prostheses which use a ceramic head within a metal liner are a relatively recent introduction. As such, survivorship rates from independent centres alongside explant analysis are rare. The early experience with this novel ceramic-on-metal (CoM) bearing couple is reported. Methods and Materials. All CoM hips implanted between 2008 and 2009 at a single hospital by a single surgeon were reviewed. Radiographs were analysed using EBRA software to determine acetabular cup inclination and anteversion angles. Blood metal ion concentrations were measured using inductively coupled plasma mass spectroscopy (ICPMS). Explants were measured for bearing surface and taper wear using a high precision co-ordinate measuring machine. The roughness of the articulating surfaces was measured with a non-contact profilometer. Results. In 54 patients 56 CoM hips were implanted. Mean (range) age was 64 years (34-87). There were 41 females and 15 males. Patients were followed-up for a mean of 1.5 years. Three hips were revised at mean of 1.2 years (2 female, 1 male) with a further 3 listed for revision under 1.5 years giving an overall failure rate of 10.7%. All these patients reported with pain. X-rays of failed devices showed a characteristic pattern of femoral stem loosening. Serum cobalt and chromium were less than 2 micrograms/L. Explant analysis of the three revised hips showed wear at the liner rim in each case. In two of these cases the wear extended completely around the circumference. The wear volumes were 4.1, 2.0 and 2.3mm3 respectively. The ceramic heads were unworn but some transfer of metal could be seen visually. There was no significant wear or deformation at the taper junctions. Typical ceramic head roughness values were 3nm Ra and so most of the surface area of the heads remained in a pristine condition. Discussion. The very high early failure rate using COM is concerning. Explant analysis suggests equatorial contacts with propagation of high frictional forces distally. These forces may have caused early loosening of the femoral stems. Orthopaedic surgeons need to be aware of this new mechanism of failure which is associated with low metal ions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 93 - 93
1 Aug 2012
Clarke S Phillips A
Full Access

Metal on metal press-fit acetabular cups are the worst performing acetabular cup type with severe failure consequences compared to cups made from more inert materials such as polyethylene or ceramic. The cause of failure of these cup types is widely acknowledged to be multi-factorial, therefore creating a complex scenario for analysis through clinical studies. A factorial analysis has been carried out using an experimentally validated finite element analysis to investigate the relative influence of four input factors associated with acetabular cup implantation on output parameters indicating potential failure of the implantation. These input factors were: cup material stiffness; cup inclination; cup version; cup seating; and level of press-fit. The output parameter failure indicators were: wear; tensile strains in the underlying bone; bone remodelling; and cup-bone micromotions. The factorial analysis concluded that the most significant influence was that of cup inclination on wear, and the second most significant was the influence of the level of press-fit on bone remodelling at the acetabular rim. Significant influence was also observed between version angle and wear, and cup-seating and micro-motion. The results demonstrated the clear multi-factorial nature of implant failure and highlighted the importance of correct implant positioning and fit


Results in patients undergoing total hip arthroplasty (THA) for femoral head osteonecrosis (ON) when compared with primary osteoarthritis (OA) are controversial. Different factors like age, THA type or surgical technique may affect outcome. We hypothesized that patients with ON had an increased revision rate compared with OA. We analysed clinical outcome, estimated the survival rate for revision surgery, and their possible risk factors, in two groups of patients.

In this retrospective cohort analysis of our prospective database, we assessed 2464 primary THAs implanted between 1989 and 2017. Patients with OA were included in group 1, 2090 hips; and patients with ON in group 2, 374 hips. In group 2 there were more men (p<0.001), patients younger than 60 years old (p<0.001) and with greater physical activity (p<0.001). Patients with lumbar OA (p<0.001) and a radiological acetabular shape type B according to Dorr (p<0.001) were more frequent in group 1. Clinical outcome was assessed according to the Harris Hip Score and radiological analysis included postoperative acetabular and femoral component position and hip reconstruction. Kaplan-Meier survivorship analysis was used to estimate the cumulative probability of not having revision surgery for different reasons. Univariate and multivariate Cox regression models were used to assess risk factors for revision surgery.

Clinical improvement was better in the ON at all intervals. There were 90 hips revised, 68 due to loosening or wear, 52 (2.5%) in group 1, and 16 (4.3%) in group 2. Overall, the survival rate for revision surgery for any cause at 22 years was 88.0 % (95% CI, 82-94) in group 1 and 84.1% (95% CI, 69 – 99) in group 2 (p=0.019). Multivariate regression analysis showed that hips with conventional polyethylene (PE), compared with highly-cross linked PEs or ceramic-on-ceramic bearings, (p=0.01, Hazard Ratio (HR): 2.12, 95% CI 1.15-3.92), and cups outside the Lewinnek´s safe zone had a higher risk for revision surgery (p<0.001, HR: 2.57, 95% CI 1.69-3.91).

Modern highly-cross linked PEs and ceramic-on-ceramic bearings use, and a proper surgical technique improved revision rate in patients undergoing THA due to ON compared with OA.