Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 68 - 68
23 Feb 2023
Lynskey S Ziemann M Jamnick N Gill S McGee S Sominsky L Page R
Full Access

Osteoarthritis (OA) is a disease of the synovial joint with synovial inflammation, capsular contracture, articular cartilage degradation, subchondral sclerosis and osteophyte formation contributing to pain and disability. Transcriptomic datasets have identified genetic loci in hip and knee OA demonstrating joint specificity. A limited number of studies have directly investigated transcriptional changes in shoulder OA. Further, gene expression patterns of periarticular tissues in OA have not been thoroughly investigated. This prospective case control series details transcriptomic expression of shoulder OA by analysing periarticular tissues in patients undergoing shoulder replacement for OA as correlated with a validated patient reported outcome measure of shoulder function, an increasing (clinically worsening) QuickDASH score. We then compared transcriptomic expression profiles in capsular tissue biopsies from the OA group (N=6) as compared to patients undergoing shoulder stabilisation for recurrent instability (the control group, N=26). Results indicated that top ranked genes associated with increasing QuickDASH score across all tissues involved inflammation and response to stress, namely interleukins, chemokines, complement components, nuclear response factors and immediate early response genes. Some of these genes were upregulated, and some downregulated, suggestive of a state of flux between inflammatory and anti-inflammatory signalling pathways. We have also described gene expression pathways in shoulder OA not previously identified in hip and knee OA, as well as novel genes involved in shoulder OA


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 1 - 1
1 Aug 2020
Culliton K Speirs A Beaulé P
Full Access

The avascular nature of articular cartilage relies on diffusion pathways to obtain essential nutrients and molecules for cellular activity. Understanding these transport pathways is essential to maintaining and improving the health of articular cartilage and ultimately synovial joints. Several studies have shown that joint articulation is associated with fluid and solute uptake although it remains unclear what role sliding motion independently plays. This study investigates the role of sliding with a non-stationary contact area on the uptake of small molecular weight tracers into articular cartilage. Ten-millimeter diameter cartilage-bone plugs were obtained from porcine knee joints and sealed into purpose made diffusion chambers. The chambers were designed to eliminate diffusion from the radial edge and only allow diffusion through the articular surface. The bone side of the chamber was filled with PBS to maintain tissue hydration while the cartilage side was filled with 0.01mg/ml fluorescein sodium salt (FNa) prepared using PBS. Sliding loads with a non-stationary contact area were applied across the articular surface by a custom apparatus using a 4.5 mm diameter spherical indenter. A moving contact area was chosen to represent physiological joint motions. Reciprocal sliding was maintained at a rate of 5 mm/s for 2 and 4 hours. Control samples were subject to passive diffusion for 0, 4, and 88 hours. After diffusion tests, samples were snap frozen and 20 µm cross-sectional cuts were taken perpendicular to the sliding direction. Samples were imaged using a Zeiss AxioImager M2 epifluorescent microscope under 5× magnification with a filter for FNa. Intensity profiles were mapped from the articular surface to the subchondral bone. Unloaded control samples demonstrated minimal solute uptake at 4 hours penetrating less than 5% of the total cartilage depth. By 88 hours solute penetration had reached the subchondral bone although there was minimal accumulation within the cartilage matrix indicated by the relatively low intensity profile values. Samples that had been subjected to reciprocal sliding demonstrated accelerated penetration and solute accumulation compared to unloaded samples. After 1 hour of reciprocal sliding, the solute had reached 40% of the cartilage depth, this increased to approximately 80% at 4 hours, with much higher intensities compared to unloaded controls. Sliding motion plays an important role in the uptake of solutes into the cartilage matrix. Maintaining joint motion both post injury and in the arthritic process is a critical component of cartilage nutrition. Samples that had been subject to reciprocal sliding demonstrated accelerated solute penetration and accumulation in the cartilage matrix, exceeding steady state concentrations achieved by passive diffusion


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 73 - 73
1 Jul 2020
Albiero A Piombo V Diamanti L Birch M McCaskie A
Full Access

Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the synovium. They are relevant to cartilage homeostasis and, like MSCs, are increasingly identified as candidates for joint repair and regenerative cell therapy. Both chondrocytes and MSCs can be regulated by the Wnt and TGFβ pathways. Dishevelled Binding Antagonist of Beta-Catenin (Dact) family of proteins is an important modulator of Wnt and TGFβ pathways. These pathways are key to MSC and chondrocyte function but, to our knowledge, the role of DACT protein has not been studied in these cells. DACT1 and DACT2 were localised by immunohistochemistry in the developing joints of mouse embryos and in adult human cartilage obtained from knee replacement. RNAi of DACT1 and DACT2 was performed on isolated chondrocytes and MSCs from human bone marrow. Knockdown efficiency and cell morphology was confirmed by qPCR and immunofluorescence. To understand which pathways are affected by DACT1, we performed next-generation sequencing gene expression analysis (RNAseq) on cells where DACT1 had been reduced by RNAi. Top statistically significant (p < 0 .05) 200 up and downregulated genes were analysed with Ingenuity® Pathway Analysis software. We observed DACT1 and DACT2 in chondrocytes throughout the osteoarthritic tissue, including in chondrocytes forming cell clusters. On the non-weight bearing and visually undamaged cartilage, DACT1 and DACT2 was localised to the articular surface. Furthermore, in mouse embryos (E.15.5), we observed DACT2 at the interzones, sites of developing synovial joints, suggesting that DACT2 has a role in cartilage progenitor cells. We subsequently analysed the expression of DACT1 and DACT2 in MSCs and found that both are expressed in synovial and bone marrow-derived MSCs. We then performed an RNAi knockdown experiment. DACT1 knockdown in both chondrocyte and MSCs caused the cells to undergo apoptosis within 24 hours. The RNA-seq study of DACT1 silenced bone marrow-derived MSCs, from 4 different human subjects, showed that loss of DACT1 has an effect on the expression of genes involved in both TGFβ and Wnt pathways and putative link to relevant cell regulatory pathways. In summary, we describe for the first time, the presence and biological relevance of DACT1 and DACT2 in chondrocytes and MSCs. Loss of DACT1 induced cell death in both chondrocytes and MSCs, with RNA-seq analysis revealing a direct impact on transcript levels of genes involved in the Wnt and TFGβ signalling, key regulatory pathways in skeletal development and repair


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 45 - 45
1 Jul 2020
Langohr G DeDecker S Khayat A Johnson J King GJ Medley J
Full Access

Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics. Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen bovine knee joints using a 20 mm hole saw and mounted in lubricant-containing chambers, with alpha calf serum diluted with phosphate buffer solution to a protein concentration of 17 g/L. The pins were loaded to 30N and given a stroke length of 10 mm for a total of 50,000 cycles at 1.2 Hz. Volumetric cartilage wear was assessed by comparing three-dimensional cartilage scans before and during wear testing. A two-way ANOVA was used for statistical analysis. To assess hemiarthroplasty joint contact mechanics, 3D finite element modelling (ABAQUS v6.12) was used to replicate the wear testing conditions. Cartilage was modeled using neo-Hookean hyper-elastic material properties. Contact area and peak contact stress were estimated. The more compliant Bionate 80A and 55D pins produced significantly less volumetric cartilage wear compared with the less compliant Bionate 75D and ceramic pins (p 0.05). In terms of joint contact mechanics, the more compliant materials (Bionate 80A and 55D) had significantly lower maximum contact stress levels compared to the less compliant Bionate 75D and ceramic pins (p < 0 .05). The results of this study show a relationship between hemiarthroplasty implant surface compliance and early in vitro cartilage wear, where the more compliant surfaces produced significantly lower amounts of cartilage wear. The results of the joint contact mechanics analysis showed that the more compliant hemiarthroplasty materials produced lower maximum cartilage contact stresses than the less compliant materials, likely related to the differences in wear observed. More compliant hemiarthroplasty surfaces may have the potential to improve post-operative cartilage contact mechanics by increasing the implant-cartilage contact area while reducing peak contact stress at the implant-cartilage interface, however, such materials must be resistant to surface fatigue and longer-term cartilage wear/damage must be assessed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_16 | Pages 5 - 5
1 Oct 2017
Miller A Stenning M Torrie A Issac A Hutchinson J Hutchinson J Chopra I Mohanty K
Full Access

Bertolotti first described articulation of the L5 transverse process with the sacrum as a cause of back pain in 1917. Since then little attention has been payed to these atypical articulations despite their high reported incidence. Here we describe our early experience of surgical treatment and propose a validated CT based classification of lumbosacral segment abnormalities (LSSA). 400 lumbosacral CT scans were reviewed (NBT), a classification devised and incidence of abnormalities recorded. 40 patients were selected and 4 independent observers classified each scan. Case notes for all patients (C&V) who received steroid injections into or surgical excision of LSSAs were reviewed. Results as follows:. 5 types of abnormality were identified. Type 0 - normal. Type 1 - asymmetrical shortening of the iliolumbar ligament. Type 2 - transverse process of L5 within 2mm of the sacrum. Type 3 - diarthrodial joint (3A: no evidence of degeneration 3B: degenerative change). Type 4 - transverse process and sacrum have fused. Type 5 - extends to L4. 54.5% of patients had abnormalities. The kappa values for the intra-observer results were 0.69 to 0.88 and the inter-observer ratings gave a combined score of over 0.7 indicating substantial agreement. Our CT classification of LSSAs is both straight forward to use and repeatable. The incidence of these abnormalities is higher in our population of CT scans compared to previous published series using plain radiographs. All patients treated with surgical excision of established articulations (Type 3A or above) reported good or excellent outcomes following excision


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 33 - 33
1 Dec 2017
Siddiqi A Restrepo C Parvizi J
Full Access

Aim. Diagnosis of periprosthetic joint infection (PJI) presents a real challenge in some patients. Batteries of tests are available to reach this diagnosis. It is unknown if blood cultures have any role in diagnosis of PJI. The objective of this study was to evaluate whether blood cultures, taken in a group of patients with PJI, was useful in identifying the infecting pathogen. Methods. The institutional database was used to identify all patients treated at our institution between 2000 – 2015 for PJI according to the latest MSIS criteria. There were a total of 864 patients with mean age of 68 years. Synovial fluid sample and/or deep tissue samples were analyzed and cultured in all of these patients. In 371 (42.9%) patients with PJI, blood cultures were also taken. Statistical analyses were performed for correlation purposes. Results. In 246 (66.3%) patients in whom an organism was isolated from joint fluid, blood cultures were negative. 32 (8.6%) patients had both negative blood and synovial joint tissue culture. Of the 93 (25%) patients with positive blood cultures, 77 (82.7%) patients had identical organism in the joint and 16 (17.2%) had different organisms. Interestingly one infection that was fungal in nature showed no growth on tissue/fluid culture, yet a fungal organism was isolated in blood culture. Additionally, of the 93 patients with positive blood cultures, 57 (61.2%) had signs of systemic sepsis with leukocytosis and increased PMN/left shift. Within the 57 patients, 50 (87.7%) had identical blood and joint culture and 7 (12.2%) were from different culture organisms. 36 (38.7%) patients had subclinical infection with no signs of systemic sepsis. Discussion. Although this study does not advocate the routine use of blood culture for diagnosis of PJI, the finding that blood culture is successful in isolating the infecting organism as the joint in a handful of cases is compelling. Thus, the result of blood culture when performed should be considered as representative of the infecting organism in PJI cases


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 15 - 15
1 Nov 2016
Thornton G Lemmex D Ono Y Hart D Lo I
Full Access

Lubricin is a proteoglycan that is a boundary lubricant in synovial joints and both a surface and collagen inter-fascicular lubricant in ligaments. The purpose of this study was to characterise the mRNA levels for lubricin in the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL) in aging and surgically-induced menopausal rabbits. We hypothesised that lubricin mRNA levels would be increased in ligaments from aging and menopausal rabbits compared with ligaments from normal rabbits. All four knee ligaments (ACL, PCL, MCL, LCL) were isolated from normal (1-year-old rabbits, n=8), aging (3-year-old rabbits, n=6), and menopausal (1-year-old rabbits fourteen weeks after surgical ovariohysterectomy, n=8) female New Zealand White rabbits. RT-qPCR was used to evaluate the mRNA levels for lubricin normalised to the housekeeping gene 18S. After removing outliers, data for normal, aging, and menopausal rabbits for each knee ligament (ACL, PCL, MCL, LCL) were compared using ANOVA with linear contrasts or Kruskal-Wallis test with Conover post-hoc analysis. For ACLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.056). For PCLs, trends for increased lubricin mRNA levels were found when comparing menopausal and aging rabbits with normal rabbits (p<0.092). For MCLs, the mRNA levels for lubricin were increased in menopausal and aging rabbits compared with normal rabbits (p<0.050). For LCLs, no differences in lubricin mRNA levels were detected comparing the three groups. For all four knee ligaments (ACL, PCL, MCL, LCL), no differences in lubricin mRNA levels were detected comparing the ligaments from menopausal rabbits with those from aging rabbits. Lubricin plays a role in collagen fascicle lubrication in ligaments (1,2). Increased lubricin gene expression was associated with mechanical changes (including decreased modulus and increased failure strain) in the aging rabbit MCL (3). Detection of similar molecular changes in the ACL, and possibly the PCL, may indicate that their mechanical properties may also change as a result of increased lubricin gene expression, thereby potentially pre-disposing these ligaments to damage accumulation. Compared to aging ligaments, aging tendons exhibited decreased lubricin gene and protein expression, and increased stiffness (4). Although opposite changes than aging ligaments, these findings support the relationship between lubricin and modulus/stiffness. The similarities between ligaments in the aging and menopausal groups may suggest that surgically-induced menopause results in a form of accelerated aging in the rabbit ACL, MCL and possibly PCL


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 140 - 140
1 Dec 2015
Santos D Oliveira M Torres T Santos F Costa A Pereira R Frias M Martins G Sarmento A Canela P Dias A Carvalho P Freitas R
Full Access

Acute septic arthritis of the knee may be a challenging diagnosis in the emergency department and must always be excluded in any patient with knee pain and local or systemic signs of infection. Arthrocentesis of the suspected knee is mandatory, since the analysis of the synovial fluid gives useful information like the white blood cell count (WBC)/mm3 or the polymorphonuclear cell percentage (PMP). These parameters will help the clinician to make the decision to drain the joint in the operation room, without having to wait for the culture or Gram stain, which may take several days to be available. The classical cutoff of 50,000 WBC/mm3 with more than 90% of PMP may fail to include all the septic arthritis of the knee, since significant variation have been described in recent years. The aim of this study was to evaluate the accuracy of WBC/mm3 and PMP in the synovial fluid in the diagnosis of acute septic arthritis of the knee. We reviewed the clinical data of patients diagnosed with acute septic arthritis of the knee admitted in our center between January 2010 and December 2014, specifically the WBC/mm3 and the PMP of the synovial joint fluid. The criteria for diagnosis of an acute septic arthritis of the knee was report of purulent material when arhtrotomy or arthroscopy was performed or a positive culture of the joint fluid. The statistical evaluation of the results was performed using Student's t-test. 48 patients matched the inclusion criteria. The mean WBC/mm3 was 44.333 (14.610–182.640) and the mean PMP was 91,89% (86,4%–98,1%). 28 patients (58,33%) had a WBC/mm3 below 50.000 and 44 patients (91,67%) had a PMP above 90%, both with no statistical significance. Knee arthrocentesis is mandatory in every patient suspected to have an acute knee pyoarthrosis, since the joint fluid analysis may show several abnormal findings. Our results show that a considerable number of patients may show a relatively low WBC/mm3 in the joint fluid in the presence of a knee pyoarthrosis. The PMP may be a better criteria, but again failed to achieve statistical significance, probably because of the low number of patients. The synovial fluid analysis alone is probably misleading in the diagnosis of an acute septic arthritis of the knee if the clinician is guided by the classical guidelines. The physical examination, medical history, laboratory and imagiologic tests are all key elements in this challenging diagnosis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 59 - 59
1 Jan 2016
Murakami T Yarimitsu S Nakashima K Yamaguchi T Sawae Y Sakai N Suzuki A
Full Access

In joint prostheses where ultra-high molecular weight polyethylene (UHMWPE) is used as bearing material, efficacious treatments such as crosslinking, addition of vitamin E and the grafting of phospholipid polymer are known to improve wear resistance. Under severe conditions of various daily activities, however, friction and wear problems in such prostheses have not yet been completely solved. In contrast, extremely low friction and minimum wear have been maintained for a lifetime in healthy natural synovial joints containing articular cartilage with superior lubricity. Accordingly, joint prostheses containing artificial hydrogel cartilage with properties similar to those of articular cartilage are expected to show superior tribological functions. In establishing the function of artificial hydrogel cartilage as a novel material for joint prostheses, the tribological properties of hydrogel materials used and synergistic performance with synovia constituents are both important. In this study, the influence of synovia constituents on friction and wear in artificial hydrogels was examined in reciprocating test and compared with that for articular cartilage. As biocompatible artificial hydrogel cartilage materials, three poly(vinyl alcohol) (PVA) hydrogels were prepared using the repeated freeze-thawing (FT) method, the cast-drying (CD) method and hybrid method for CD on FT, which are physically crosslinked with hydrogen bonding but differ in terms of structure and mechanical properties. First the frictional behavior of the PVA hydrogels and articular cartilage as ellipsoidal specimens was examined in reciprocating tests against a glass plate with a sliding speed of 20 mm/s under constant continuous loading. As shown in Fig.1, the three hydrogels exhibited different frictional behaviors in a saline solution. It is noteworthy that the hybrid gel maintained very low friction until the end of test. The CD gel showed slightly higher friction and a gradual increase. Meanwhile, the FT gel showed initial medium friction and a gradual increase echoing the time-dependent behavior of natural articular cartilage. Based on these observations, focus was placed on FT gel and articular cartilage to examine how synovia constituents influence friction and wear in these hydrogel materials. In human body, lubricating constituents in synovial fluids such as hyaluronic acid, proteins, glycoproteins and phospholipids are considered to reduce the coefficient of friction in solid-to-solid interaction. Here, the effects of hyaluronic acid (HA, molecular weight: 9.2×10. 5. ), serum proteins and phospholipid were examined. Dipalmitoylphosphatidylcholine (DPPC) was used as a typical phospholipid. As indicated in Fig.2 for repeated reciprocating tests, addition of HA alone was effective particularly for PVA-FT hydrogel. The combination of HA and DPPC was more effective in reduction of friction. The simulated synovial fluid (composed of HA 0.5 wt%, DPPC 0.01 wt%, albumin(Alb) 1.4 wt% and gamma-globulin (g-glob) 0.7 wt%) exhibited both low friction and minimum wear. The rubbing surfaces of articular cartilage and FT gel after tests are shown in Fig.3. On the articular cartilage surface, gel-like surface layer existed. On the FT gel surface, the original texture was observed without damage. These results indicate the importance of synovia constituents for the clinical application of artificial hydrogel cartilage in joint prostheses


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 65 - 65
1 May 2016
Murakami T Yarimitsu S Nakashima K Sakai N Yamaguchi T Sawae Y Suzuki A
Full Access

Total hip and knee joint prostheses composed of ultra-high molecular weight polyethylene (UHMWPE) and metal or ceramics have been widely applied. Efficacious treatments such as crosslinking, addition of vitamin E and phospholipid coating to UHMWPE have reduced wear and extended the life of joint prostheses. However, wear problems have not yet been completely solved for cases involving severe conditions, where direct contact can occur in mixed or boundary lubrication. In contrast, extremely low friction and minimum wear are maintained for a lifetime in healthy natural synovial joints containing articular cartilage with superior lubricity. Accordingly, joint prostheses containing artificial hydrogel cartilage with properties similar to those of articular cartilage are expected to show superior tribological functions. In establishing the function of artificial hydrogel cartilage as a novel material for joint prostheses, the tribological properties of hydrogel materials used and synergistic performance with synovia constituents are both important. In this study, the lubrication ability and wear resistance properties of poly(vinyl alcohol) (PVA) hydrogels were evaluated by differences in friction and wear properties in reciprocating tests lubricated with saline and simulated synovial fluid. Biphasic finite element (FE) analysis was applied to elucidate the role of biphasic lubrication mechanism in hydrogels. As biocompatible artificial hydrogel cartilage materials, three PVA hydrogels were prepared using the repeated freeze-thawing (FT) method, the cast-drying (CD) method and the hybrid method for laminated gel of FT on CD, which are physically crosslinked with hydrogen bonding but differ in terms of structure and mechanical properties. First the frictional behavior of the ellipsoidal PVA hydrogel specimens was examined in reciprocating tests against a glass plate, which corresponds to simplified knee prosthesis model (Fig.1), with a sliding speed of 20 mm/s under constant continuous loading. As shown in Fig.1, the three hydrogels exhibited different frictional behaviors in a saline solution. It is noteworthy that the hybrid gel maintained very low friction until the end of test. The CD gel showed slightly higher friction and a gradual increase. Meanwhile, the FT gel showed initial medium friction and a gradual increase. Time-dependent frictional behavior was clarified with biphasic lubrication mechanism via biphasic FE analysis. Contact surface observation showed minimal wear without scratches for hybrid gel in saline. Next, simulated synovial fluid composed of 0.5 wt% hyaluronic acid (HA, molecular weight: 920,000 Da), 1.4 wt% albumin, 0.7 wt% gamma-globulin and 0.01 wt% L-alpha dipalmitoylphosphatidylcholine (DPPC), was used to evaluate tribological performance of these gels in physiological condition. As shown in Fig.2, PVA hydrogels in simulated synovial fluid exhibited very low friction, with hybrid gel showing an extremely low friction coefficient of 0.003 in the test. These friction differences were sustained by biphasic FE analysis. Hybrid gel further showed very little wear (Fig.3), which is favorable in terms of hydrogel durability. These results indicate the importance of superior lubricity and wear resistance of PVA hybrid gel for the clinical application of artificial hydrogel cartilage in joint prostheses


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 211 - 211
1 Jun 2012
Sheeraz A Picardo N Mann B Skinner J
Full Access

Introduction. Melorheostosis is a rare bone dysplasia characterized by its classic radiographic appearance resembling dripping candle wax. The condition was originally described by Leri and Joanny in 1922. Its etiology is not fully known and treatment in most instances has been symptomatic. There are nearly 350 reported cases on melorheostosis, joint replacement has been successfully attempted in the shoulder and knee joint. We describe a case of severe melorheostosis affecting the left hip causing secondary osteo-arthritis, which was treated with a total hip replacement (THR). To the best of our knowledge this is the first reported case of its kind in the World literature. Case history. A 52-year-old male of Indian origin with known melorheostosis of the left leg for over 30 years, presented with symptoms suggestive of severe osteo-arthritis of the left hip. Previously he had been treated for melorheostosis of the knee joint (fig 1a & 1b) with excisions and decompression of the medial femoral condyle. His left hip became more painful over the last few years. He had a fixed flexion deformity of 20° of the hip, severe muscle wasting and the affected leg was 3 cm longer than the right leg. Radiographs (fig 2a & 2b) confirmed the presence of sclerotic new bone in the acetabulum eroding the femoral head. He had the classical dripping candle wax appearance along the medial border of the neck and shaft of the femur. He underwent a THR using a Corail-Pinnacle un-cemented prosthesis using ceramic on polyethylene bearing surfaces (fig 3a & 3b). Post operatively he made a quick recovery and there was a marked improvement in his symptoms and functional outcome scores at 6 weeks. Discussion. Melorheostosis has an incidence of 0.9 in one million and affects men and women equally. It can affect any site in the body, however lower limbs are more commonly affected. It classically presents on only one side of the cortex of long bones. It is common in synovial joints and crosses the joint line in 35% cases. Its etiology is unknown and it is a benign condition but there are 3 reported cases in literature associated with malignancy. Chronic pain and deformity from melorheostosis can be severely debilitating for patients. Its management in most cases is conservative. Surgical intervention is advocated in chronic debilitating symptoms. Successful resection of these lesions can translate into near complete resolution of the symptoms. A Total hip replacement can be used to treat severe melorheostosis of the hip joint with complete relief of symptoms and achieving a good functional outcome in the short term


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 440 - 440
1 Dec 2013
Murakami T Sakai N Yamaguchi T Yarimitsu S Nakashima K Sawae Y Suzuki A
Full Access

In joint prostheses using ultra-high molecular weight polyethylene (UHMWPE) as bearing material, wear problems are not yet completely solved under severe conditions in various daily activities, although efficacious treatments such as crosslinking, addition of vitamin E and the grafting of phospholipid polymer improved the wear properties. In contrast, in healthy natural synovial joints possessing articular cartilage as biphasic bearing material lubricated with synovial fluid, minimal wear with extremely low friction has been maintained for a whole life. Therefore, the joint prosthesis with artificial hydrogel cartilage with similar properties to articular cartilage is expected to show superior tribological functions with very low friction and infinitesimal wear if the appropriate lubrication mechanism is actualized. In this study, the effectiveness of biphasic lubrication mechanism in hydrogel through significant load support by fluid phase is evaluated in finite element (FE) analysis for reciprocating motion. As biocompatible artificial hydrogel cartilage materials, two kinds of poly (vinyl alcohol) (PVA) hydrogels were prepared by the repeated freezing-thawing method and the cast-drying method, which are physically crosslinked with hydrogen bonding but different in structure and mechanical properties. To evaluate these time dependent behaviors of load-support ratio of fluid/solid phases and friction, two-dimensional biphasic FE analysis for cylindrical PVA hydrogel cartilage as 1.5 mm thick soft layer and radius of 5 mm was conducted under continuous loading of 0.2 N/mm by impermeable rigid plate in reciprocating motion in Fig. 1. The sliding speed is 4 mm/s for stroke of 8 mm at period of 4 s. A commercial package ABAQUS (6.8–4), which was appropriately evaluated for the biphasic FE analyses, was used in this study. The biphasic tissue was modeled by CPE4RP (four-node bilinear displacement and pore pressure, reduced integration with hour glass control) elements. The mechanical properties such as permeability, Young's modulus and Poisson ratio were estimated by curve fitting to stress relaxation behaviors in compression test. As indicated in Fig. 2, it is worth noting that the cast-drying PVA shows significant interstitial fluid pressurization compared with a repeated freezing-thawing PVA hydrogel at 292 s after start-up, where coefficient of friction for solid-to-solid was assumed as 0.2. Changes in friction for PVA hydrogels in reciprocating motion were estimated as shown in Fig. 3. In spite of high friction (0.2) for solid-to-solid, cast-drying PVA brought the gradual decreasing in friction, probably due to rising of load-support ratio by fluid phase from initial 74% to 80%. In human body, lubricating constituents in synovial fluids such as hyaluronic acid, proteins, glycoproteins and phospholipids can reduce the coefficient of friction for solid-to-solid. As suggested for low coefficient of friction for solid-to-solid as 0.01 in Fig. 3, rubbing friction is expected to be reduced to significantly low level. As described above, the effective biphasic lubrication can sustain low friction level and minimal wear in synergistic action with soft-elastohydrodynamic lubrication, hydration lubrication and boundary lubrication as a similar mechanism to natural cartilage in various daily activities. These results indicate the usefulness of artificial hydrogel cartilage for longer durability in joint prostheses for clinical application