Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 115 - 115
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function, there is little objective information relating geometric changes imposed by the reverse shoulder and arm function, particularly the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over a typical range of humeral offset locations in shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center and humeral offset in three representative RTSA subjects that spanned the anatomical range from our previous study cohort. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant configuration. A 12 degree of freedom, subject-specific model was used to represent the shoulders of three patients with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used subject-specific in vivo abduction kinematics and systematically varied humeral offset locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The humeral offset was varied from its surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied up to 20 mm with humeral offset and center of rotation variations, primarily in the medial/lateral and superior/inferior directions. Similarly, the lateral deltoid moment arm demonstrated variations up to 20 mm, primarily with humeral offset changes in the medial/lateral and anterior/posterior directions. The posterior deltoid moment arm varied up to 15mm, primarily in early abduction, and was most sensitive to changes of the humeral offset in the superior/inferior direction. The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for existing RTSA subjects. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to humeral offset changes early in the abduction arc. Moment arm changes of 15–20 mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moment arms through surgical placement of the joint center of rotation and humeral stem. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 106 - 106
1 Jan 2016
Walker D Kinney A Struk A Fregly B Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function there is little objective information relating geometric changes imposed by the reverse shoulder and the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over varied joint centers for shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center in one representative RTSA subject. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant placement. A 12 degree of freedom, subject-specific model was used to represent the shoulder of a patient with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used these abduction kinematics and systematically varied joint center locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from its surgical position ±4 mm in the anterior/posterior direction, 0–24 mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied up to 16mm with center of rotations variations, primarily in the medial/lateral and superior/inferior directions (Figure 2, Table 1(Figure 1)). Similarly, the lateral deltoid moment arm demonstrated variations up to 13 mm, primarily with joint center changes in the anterior/posterior and superior/inferior directions. The posterior deltoid moment arm varied up to 10mm, primarily in early abduction, and was most sensitive to changes of the joint center in demonstrated a sensitivity of 6 mm corresponding to variations in the superior/inferior directions (Figure 2). The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for an existing RTSA subject. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to joint center changes early in the abduction arc. Moment arm changes of 10–16mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moments arms through surgical placement of the joint center of rotation. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 574 - 574
1 Dec 2013
Walker D Struk A Wright T Banks S
Full Access

Background:. An upper extremity model of the shoulder was developed from the Stanford upper extremity model (Holzbaur 2005) in this study to assess the muscle lengthening changes that occur as a function of kinematics for reverse total shoulder athroplasty (RTSA). This study assesses muscle moment arm changes as a function of scapulohumeral rhythm (SHR) during abduction for RTSA subjects. The purpose of the study was to calculate the effect of RTSA SHR on the deltoid moment arm over the abduction activity. Methods:. The model was parameterized as a six degree of freedom model in which the scapula and humeral rotational degrees of freedom were prescribed from fluoroscopy. The model had 15 muscle actuators representing the muscles that span the shoulder girdle. The model was then uniformly scaled according to reflective markers from motion capture studies. An average SHR was calculated for the normal and RTSA cohort set. The SHR averages were then used to drive the motion of the scapula and the humerus. Lastly 3-dimensional kinematics for the scapula and humerus from 3d-2d fluoroscopic image registration techniques were used to drive the motion of model. Deltoid muscle moment arm was calculated. Results:. Muscle moment arms were calculated for the anterior, lateral and posterior heads of the deltoid. Significant changes (>1 mm) were only found in comparing the anterior deltoid muscle moment arm predictions between the normal and RTSA group. The anterior deltoid for RTSA had a moment arm range from −12.5–20.6 mm over the max abduction arc. The anterior deltoid for normal group had a moment arm range from −14.5–22.6 mm over the max abduction arc. There is a difference of 2 mm between the normal and RTSA anterior deltoid moment arm that converges to 0 at 45° of elevation. The 2 mm difference is also seen again as the difference diverges again (Figure 1). There were no significant differences found between normal and RTSA groups for the lateral and posterior deltoid. The most significant difference between moment arm calculations for the RTSA and normal group was found in the Anterior deltoid. (Figure 1). Conclusion:. It was found that the muscle moment arms in the RTSA group were significantly different than in the normal group for the anterior deltoid. No other significant differences were found. In the initial 40° of elevation there is a 2 mm difference in anterior deltoid muscle moment arm between the normal and RTSA group. This difference is also found is seen from 60°–90° of elevation. From 35° −55° there is no difference between RTSA and normal groups. SHR for the RTSA (1.8: 1) is significantly lower than in the normal (2.5: 1) group. Differences found in muscle moment arms over the abduction arc between RTSA and normal groups point to the significant change of the anterior deltoid after RTSA. This study primary objective was to assess the differences in muscle moment arms as a function of SHR (Kinematic differences). Significant differences found may improve implant design, surgical technique, and rehabilitative strategies for reverse shoulder surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 114 - 114
1 May 2016
Walker D Struk A Matsuki K Wright T Banks S
Full Access

Background. Though many advantages of reverse total shoulder arthroplasty (RTSA) have been demonstrated, a variety of complications indicate there is much to learn about how RTSA modifies normal shoulder function. This study assesses how RTSA affects deltoid muscle moment arms post-surgery using a subject-specific computational model driven by in vivo kinematic data. Methods. A subject-specific 12 degree-of-freedom (DOF) musculoskeletal model was used to analyze the shoulders of 26 subjects (14 RTSA, 12 Normal). The model was modified from the work of Holzbaur et al. to directly input 6 DOF humerus and scapula kinematics obtained using fluoroscopy. Results. The moment arm of the anterior, lateral and poster aspects of the deltoid was found to be significantly different when comparing RTSA and normal cohorts. Anterior and lateral deltoid moment arms were found to be larger at initial elevation. There was large inter-subject variability within the RTSA group. Conclusion. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and the muscle moment arms in the RTSA shoulder. RTSA shoulders maintain the same anterior and posterior deltoid muscle moment arm patterns as healthy shoulders, but they show much greater inter-subject variation and larger moment arm magnitudes. These observations provide a basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 73 - 73
1 Mar 2017
Walker D Kinney A Wright T Banks S
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance. An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle activation and normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. Overall muscle activity varied over 1521 different implant configurations for the RTSA subject. For initial elevation the RTSA subject showed at least 25% deltoid activation sensitivity in each of the directions of joint configuration change(Figure 1). Posterior deltoid showed a maximal activation variation of 84% in the superior/inferior direction(Figure 1c). Deltoid activation variations lie primarily in the superior/inferior and anterior/posterior directions. An increasing trend was seen for the anterior, lateral and posterior deltoid outside of the discontinuity seen at 28°(Figure 1). Activation variations were compared to subject's experimental data. Reserve actuation for all samples remained below 4Nm(Figure 2). The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions(Figure 3). Current shoulder models utilize cadaver information in their assessment of generic muscle strength. In adding to this literature we performed a sensitivity study to assess the effects of RTSA joint configurations on deltoid muscle performance in a single patient-specific model. For this patient we were able to assess the best joint configuration to improve the patients muscle function and ideally their clinical outcome. With this information improvements can be made to the surgical placement and design of RTSA on a patient-specific basis to improve functional/clinical outcomes while minimizing complications. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 119 - 119
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance. An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle activation and normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. Overall muscle activity varied over 1521 different implant configurations for the RTSA subject. For initial elevation the RTSA subject showed at least 25% deltoid activation sensitivity in each of the directions of joint configuration change(Figure 1A–C). Posterior deltoid showed a maximal activation variation of 84% in the superior/inferior direction(Figure 1C). Deltoid activation variations lie primarily in the superior/inferior and anterior/posterior directions(Figure 1). An increasing trend was seen for the anterior, lateral and posterior deltoid outside of the discontinuity seen at 28°(Figur 1A–C). Activation variations were compared to subject's experimental data (Figure 1). Reserve actuation for all samples remained below 4Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions. Current shoulder models utilize cadaver information in their assessment of generic muscle strength. In adding to this literature we performed a sensitivity study to assess the effects of RTSA joint configurations on deltoid muscle performance. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 66 - 66
1 Dec 2017
Sabesan V Petersen-Fitts GR Lombardo DJ Liou W
Full Access

Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimise performance in rotator cuff deficient shoulders. These advancements are not without tradeoff and can have negative biomechanical effects. The objective of this study was to develop an integrated FEA kinematic model to compare the muscle forces and joint reaction force (JRF) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the OpenSim shoulder model. Static optimisations then allowed for calculation of the individual muscle forces, moment arms and JRF relative to net joint moments. Three dimensional computer models of humeral lateralised design (HLD), glenoid lateral design (GLD), and Grammont design (GD) RSA were integrated and parametric studies were performed. Overall there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal and external rotation. The joint reactive forces in abduction and flexion decreased similarly for all RSA designs compared to the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in kinematic differences most prominently seen in the deltoid muscle and overall joint reactive forces. Further research utilising this novel integrated model can help guide continued optimisation of RSA design and clinical outcomes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2018
Walker D Kinney A Banks S Wright T
Full Access

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance. An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied according to previous published work from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction (Walker 2015 et al. Table 2). Overall muscle normalized operating length varied over 1521 different implant configurations for the RTSA subject. Ideal muscle normalized operating length variations were found to be in all the fundamental directions that the joint was varied. The anterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the anterior/posterior medial/lateral direction. It lateral deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. It posterior deltoid normalized operating length was found to be most sensitive with joint configurations changes in the medial/lateral direction. Reserve actuation for all samples remained below 1 Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions. Current shoulder models focus on predicting muscle moment arms. Although valuable it does not allow me for active understanding of how lengthening the muscle will affect its ability to generate force. Our study provides an understanding of how muscle lengthening will affect the force generating capacity of each of the heads of the deltoid. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 13 - 13
1 May 2016
Lombardo D Yang Y Liou W Frank C Sabesan V
Full Access

Introduction. Reverse Shoulder Arthroplasty (RSA) improves the mechanics of rotator cuff deficient shoulders. To optimize functional outcomes and minimize failures of the RSA manufacturers have recently made innovative design modifications with lateralized components. However, these innovations have their own set of biomechanical trade-offs, such as increased shear forces along the glenoid bone interface. The objective of this study was to develop an efficient musculoskeletal model to evaluate and compare both the muscle forces and joint reactive force of a normal shoulder to those implanted with varied RSA implant designs. We believe these findings will provide valuable insight into possible advantages or shortcomings of this new RSA design. Methods. A kinematic model of a normal shoulder joint was adapted from publically available musculoskeletal modeling software. Static optimizations then allowed for calculation of the individual muscle forces, moment arms and joint reactive forces relative to net joint moments. An accurate 3D computer models of humeral lateralized design (HLD) (Equinoxe, Exactech, Gainesville FL, USA), glenoid lateral design (GLD) (Encore, DJO Global, Vista CA, USA), and Grammont design (GD) (Aequalis, Tornier, Amsterdam, NV) reverse shoulder prostheses was also developed and parametric studies were performed based on the numerical simulation platform. Results. As expected, there were decreases in muscle forces in all RSA models (Table 1). These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion (Figure 1) and in the rotator cuff muscles under both internal and external rotation (Figure 2). In all RSA models the muscle forces of the rotator cuff were diminished to near zero in all range of motions. The joint reactive forces in abduction and flexion decreased similarly for all RSA models compared to the normal shoulder model, with the greatest decrease again seen in the HLD model (Table 1). Conclusion. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in kinematic differences most prominently seen in the deltoid muscle and overall joint reactive forces. These differences could have a profound effect on the ultimate clinical success and long term outcomes for RSA. These results can help guide continued optimization of RSA design and clinical outcomes. The developed innovative shoulder modeling simulation could serve as a prototype for testing of future implant design concepts


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 82 - 82
1 Aug 2013
Breckon C de Beer T Barrow A
Full Access

Reverse Shoulder Arthroplasty (RSA) has been widely accepted for the treatment of rotator cuff arthropathy. There are a number of other shoulder pathologies where the reverse shoulder prosthesis can salvage previously untreatable shoulder conditions and restore function to the shoulder. This is a series of cases where RSA has been used to treat shoulder fractures. Material. Our indications for the reverse prosthesis in fracture management were:. Revision of failed fracture fixation with a deficient rotator cuff – 2 patients;. Acute 3 and 4 part fractures in the elderly, osteoporotic – 1 patient;. Acute 4 part fracture dislocation in elderly, osteoporotic – 1 patient;. Revision of non-union and malunions – 5 patients;. Revision of hemiarthroplasties which were initially done for fracture management – 5 patients. Results. There were a total of 14 cases treated for fractures out of 123 reverse shoulder arthroplasties performed. The average age for the fracture cases was 68 years (range 47–87) and for non-fracture RSA cases 73 years (range 51–88). The average follow-up Constant Score was 53 for fracture cases and 67 for non-fracture RSA cases. Complications included 1 dislocation and 1 deep infection. The problem with treatment of complex cases is there is an increased risk of complications. Problems encountered in the use of reverse shoulder arthroplasty in complex diagnoses include: instability, notching of scapula, scapula fractures, sepsis, lack of bone stock, poor quality soft-tissue and deficient deltoid muscle due to numerous previous surgical procedures, distortion of anatomy due to trauma, subscapularis deficiency and problems encountered from metal implants in situ. Conclusion. RSA is a good salvage procedure for cuff deficient shoulder fracture cases


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_27 | Pages 25 - 25
1 Jul 2013
Robati S Shahid M Allport J Ray A Sforza G
Full Access

Reverse polarity shoulder replacements are indicated in cases of gleno-humeral arthritis with the presence of rotator cuff muscle dysfunction. Despite some studies demonstrating early improvement in function and pain, limited information still exists regarding the durability and longer term outcomes of these prostheses. The reported complication rates have been reported to range from 0–68%. Post-operative clinical complication rates of three commonly used reverse polarity total shoulder replacements (Delta, Verso and Equinoxe) were evaluated against those mentioned in the literature to predict satisfactory outcome. A retrospective review of 54 patients (3.5F:1M) and 64 operations (27L:37R) between 2004–2011 was carried out. Post-operative complications were searched for through medical records, the local hospital database (BLuespearIT) and the Picture Archiving and Imaging System (PACS). All operations were performed by two experienced consultant-grade orthopaedic shoulder surgeons. The mean age at time of operation was 75.9 years (range 64–94). 33 Delta, 19 Equinoxe and 12 Verso prostheses were inserted. Three patients were excluded from the study due to insufficient information from medical records and radiography. Total complications were seen in 25 % of operated cases:- dislocation (6), fracture (4), deep infection (2), significant post-operative pain (1) and deltoid muscle dysfunction (3). Complications categorised according to prosthesis type were:- Delta (24%), Equinoxe (32%) and Verso (8%). Short to medium term complication rates using reverse polarity total shoulder replacements are higher than the majority of the current literature suggests. The Verso is associated with the least number of complications which may correlate with its minimally invasive approach


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 105 - 105
1 Jan 2016
Walker D Kinney A Struk A Fregly B Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is increasingly used in the United States since approval by the FDA in 2003. RTSA relieves pain and restores mobility in arthritic rotator cuff deficient shoulders. Though many advantages of RTSA have been demonstrated, there still are a variety of complications (implant loosening, shoulder impingement, infection, frozen shoulder) making apparent much still is to be learned how RTSA modifies normal shoulder function. The goal of this study was to assess how RTSA affects deltoid muscle moment generating capacity post-surgery using a subject-specific computational model driven by in vivo kinematic data. A subject-specific 12 degree-of-freedom (DOF) musculoskeletal model was used to analyze the shoulders of 27 subjects (14-RTSA, 12-Normal). The model was modified from the work of Holzbaur et al. to directly input 6 DOF humerus and scapula kinematics obtained using fluoroscopy. Model geometry was scaled according to each subject's skeletal dimensions. In vivo abduction kinematics for each subject were input to their subject-specific model and muscle moment arms for the anterior, lateral and posterior aspects of the deltoid were measured over the arc of motion. Similar patterns of muscle moment arm changes were observed for normal and RTSA shoulders. The moment arm of the anterior deltoid was positive with the arm at the side and decreased monotonically, crossing zero (the point at which the muscle fibers pass across the joint center) between 50°–60° glenohumeral abduction (Figure 1a). The average moment arm of the lateral deltoid was constant and positive in normal shoulders, but showed a decreasing trend with abduction in RTSA shoulders (Figure 1b). The posterior deltoid moment arm was negative with the arm at the side, and increased monotonically to a positive value with increasing glenohumeral abduction (Figure 1c). Subject-specific moment arm values for RTSA shoulders were highly variable compared to normal shoulders. 2-way repeated measures ANOVA showed significant differences between RTSA and normal shoulders for all three aspects of the deltoid moment arm, where the moment arms in RTSA shoulders were smaller in magnitude. Shoulder functional capacity is a product of the moment generating ability of the shoulder muscles which, in turn, are a function of the muscle moment arms and muscle forces. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and, therefore, the muscle moment arms in the RTSA shoulder. Our results show RTSA shoulders maintain the same muscle moment arm patterns as healthy shoulders, but they show much greater inter-subject variation and smaller moment arm magnitudes. These observations show directly how RTSA configuration and implant placement affect deltoid moment arms, and provide an objective basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 265 - 265
1 Mar 2013
Miyoshi N Suenaga N Oizumi N Taniguchi N Ito H
Full Access

Introduction. In recently, Reverse shoulder arthroplasty (RSA) in patients with irreparable rotator cuff tear has been worldwidely performed. Many studies on RSA reported a good improvement in flexion of the sholulder, however, no improvement in external rotation (ER)and internal rotation motion (IR). Additionally, RSA has some risks to perform especially in younger patients, because high rates of complications such as deltoid stretching and loosening, infection, neurologic injury, dislocation, acromial fracture, and breakage of the prosthesis after long-term use were reported. Favard et al noted a 72% survival with a Constant-Murley score of <30 at 10 years with a marked break occurring at 8 years. Boileau et al noted caution is required, as such patients are often younger, and informed consent must obviously cover the high complication rate in this group, as well as the unknown longer-term outcome. Its use should be limited to elderly patients, arguably those aged over 70 years, with poor function and severe pain related to cuff deficiency. We developed a novel strategy in 2001, in which we used the humeral head to close the cuff defect and move the center of rotation medially and distally to increase the lever arm of the deltoid muscle. Aim. The aim of this study was to investigate clinical outcome of our strategy for younger patients with an irreparable rotator cuff tear. Materials and Methods. Eighteen shoulders (9 of male patients, 9 of female patients) of patients under 70 years old with an irreparable cuff tears and who were treated with Humeral Head Replacement (HHR) and cuff reconstruction were followed up for more than 12 months. The average age was 63.9 years (range, 58–69 years). The average follow-up period was 27.3 months (range, 12–76 months). The cuff defect was successfully closed in 8 shoulders, whereas 8 shoulders required a Latissimus Dorsi transfer; one other shoulder required a Pectralis Major transfer, and one required both Latissimus dorsi and pectoralis major transfers. Range of motion (flexion, ER), the shoulder score of Japanese Orthopaedic Association (JOA score), and complications were evaluated. Results. Shoulder pain decreased in all patients after surgery. JOA score was improved from 41.1 to 82.6 points after surgery, Flexion motion improved from 72.5 to 145.6 degrees postoperatively and ER increased from 17.5 to 37.8 degrees postoperatively. There were no complications. Conclusion. In our study, HHR using the small head of the humerus and cuff reconstruction for patients under 70 years old with an irreparable rotator cuff tear yielded favorable results as compared to RSA, especially in terms of the ER Furthermore, the advantages of our strategy is able to keep bone stock of the glenoid after surgery. If revision surgery is required, RSA can be performed. Since the patients included in our study were relatively active, long-term follow-up will be required to assess their progress


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 275 - 275
1 Dec 2013
Costantini O Choi D Gulotta L Kontaxis A
Full Access

Lateralizing the center of rotation in reverse shoulder arthroplasty has been the subject of renewed interest due to complications associated with medialized center of rotation implants. Benefits of lateralization include: increased joint stability, decreased incidence of scapular notching, increased range of motion, and cosmetic appeal. However, lateralization may be associated with increased risk of glenoid loosening, which may result from the increased shear forces and the bending stresses that manifest at the bone-implant interface. To address glenoid loosening in reverse implants with lateralized joint centers, recent studies have focused on testing and improving implant fixation. However, these studies use loads derived from literature specific to subjects with normal anatomy. The aim of this study is to characterize how joint center lateralization affects the loading in reverse shoulder arthroplasty. Using an established computational shoulder model that describes the geometry of a commercial reverse prosthesis (DELTA® III, DePuy), motion in abduction, scapular plane elevation, and forward flexion was simulated. The simulations were run for five progressively lateralized centers of rotation: −5, 0, +5, +10, and +15 mm (Figure 1). The model was modified to simulate a full thickness rotator cuff tear, where all cuff musculature except Teres Minor were excluded, to reflect the clinical indication for reverse shoulder arthroplasty on cuff tear arthropathy patients. To analyze the joint contact forces, the resultant glenohumeral force was decomposed into compression, anterior-posterior shear, and superior-inferior shear on the glenoid. Joint center lateralization was found to affect the glenohumeral joint contact forces and glenoid loads increased by up to 18% when the center was lateralized from −5 mm to +15 mm. Compressive forces were found to be more sensitive to lateralization in abduction, while changes in shear forces were more affected in forward flexion and scapular plane abduction. On average, the superior shear component showed the largest increases due to lateralization (up to a 21% increase), while the anterior-posterior shear component showed larger changes than those of compression, except in the most lateralized center position (Figure 2). The higher joint loads in the lateralized joint centers reflect a shortening of the Deltoid muscle moment arms (Figure 3), since the muscle needs to exert more force to provide the desired motions. The additional shear forces generated by the lateralization may increase the risk of the ‘rocking-horse’ effect. Together with the lateralized joint center, this creates an additional bending stress at the bone-implant interface that puts the implant at further risk of loosening (Figure 1). Current studies on implant fixation tend to use loads in compression and superior shear that exceed the forces seen in this study but have not investigated anterior-posterior shear loads. Our data support that loading in anterior-posterior direction can be significant. Using inappropriate loads to design fixation may result in excessive loss of bone stock and/or unforeseen implant loosening. The implication is that future studies may be performed using this more relevant data set to navigate the tradeoff between fixation and bone conservation