Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

HOW SENSITIVE IS THE DELTOID PERFORMANCE TO HUMERAL OFFSET CHANGES WITH RTSA?

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress, 2015. PART 4.



Abstract

Reverse Total shoulder arthroplasty (RTSA) has become an increasingly used solution to treat osteoarthritis and cuff tear arthropathy. Though successful there are still 10 to 65% complication rates reported for RTSA. Complication rates range over different reverse shoulder designs but a clear understanding of implant design parameters that cause complications is still lacking within the literature. In efforts to reduce complication rates (Implant fixation, range of motion, joint stiffness, and fracture) and improve clinical/functional outcomes having to do with proper muscle performance we have employed a computational approach to assess the sensitivity of muscle performance to changes in RTSA implant geometry and surgical placement. The goal of this study was to assess how changes in RTSA joint configuration affect deltoid performance.

An approach was developed from previous work to predict a patient's muscle performance. This approach was automated to assess changes in muscle performance over 1521 joint configurations for an RTSA subject. Patient-specific muscle moment arms, muscle lengths, muscle velocities, and muscle parameters served as inputs into the muscle prediction scheme. We systematically varied joint center locations over 1521 different perturbations from the in vivo measured surgical placement to determine muscle activation and normalized operating region for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from the RTSA subject's nominal surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction.

Overall muscle activity varied over 1521 different implant configurations for the RTSA subject. For initial elevation the RTSA subject showed at least 25% deltoid activation sensitivity in each of the directions of joint configuration change(Figure 1A–C). Posterior deltoid showed a maximal activation variation of 84% in the superior/inferior direction(Figure 1C). Deltoid activation variations lie primarily in the superior/inferior and anterior/posterior directions(Figure 1). An increasing trend was seen for the anterior, lateral and posterior deltoid outside of the discontinuity seen at 28°(Figur 1A–C). Activation variations were compared to subject's experimental data (Figure 1). Reserve actuation for all samples remained below 4Nm. The most optimal deltoid normalized operating length was implemented by changing the joint configuration in the superior/inferior and medial/lateral directions.

Current shoulder models utilize cadaver information in their assessment of generic muscle strength. In adding to this literature we performed a sensitivity study to assess the effects of RTSA joint configurations on deltoid muscle performance. With this information improvements can be made to the surgical placement and design of RTSA to improve functional/clinical outcomes while minimizing complications.


*Email: