Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2018
Thorpe A Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of Low back pain (LBP). We have reported an injectable hydrogel (NPgel), which following injection into bovine NP explants, integrates with NP tissue and promotes NP cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here we investigated the injection of NPgel+MSCs into bovine NP explants under degenerate culture conditions to mimic the in vivo environment of the degenerate IVD. Methods. hMSCs were incorporated within liquid NPgel and injected into bovine NP explants alongside controls. Explants were cultured for 6 weeks under hypoxia (5%) with ± calcium 5.0mM CaCl. 2. or IL-1β individually or in combination to mimic the degenerate microenvironment. Cell viability was assessed by caspase 3 immunohistochemistry. Histological and immunohistochemical analysis was performed to investigate altered matrix synthesis and matrix degrading enzyme expression. Results. CFSe positive hMSCs were identified in all NPgel injected explants and cell viability was maintained. The NPgel integrated with NP tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Increased cellular immunopositivty for aggrecan and collagen type II as well as decreased cellular immunopositivity for degrading enzyme expression was observed within NP tissue removed from the injection site. Conclusion. MSCs incorporated within NPgel could be used to regenerate the NP and restore the healthy NP phenotype of degenerate NP cells as a treatment strategy for LBP. We are currently investigating the survival and differentiation capacity of hMSCs delivered via the NPgel into degenerate human NP explants and thus ascertain the future clinical success of this therapy. Conflicts of Interest: None. Funding: BMRC, MERI Sheffield Hallam University


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 22 - 22
1 Sep 2019
Thorpe A Partridge S Snuggs J Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). We have developed an injectable hydrogel (NPgel), which following injection into bovine IVD explants, integrates with IVD tissue and promotes disc cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here, we investigated the injection of NPgel+MSCs into IVD explants under degenerate culture conditions. Methods and Results. The NPgel integrated with bovine and human degenerate Nucleus Pulposus (NP) tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Significantly increased cellular immunopositivty for aggrecan was observed within native NP cells surrounding the site where NPgel+MSCs were injected (P≤0.05). In NP explants a significant decrease in catabolic factors were observed where NPgel+MSCs was injected in comparison to controls. Conclusions. In agreement with our previous findings NPgel was sufficient alone to induce NP cell differentiation of MSCs following injection into NP tissue explants. Here, we have shown that viability is maintained even in degenerate conditions. Injection of NPgel with MSCs increased aggrecan expression and reduced MMP3 and IL-1R1 expression by native NP cells. The NPgel with incorporated MSCs has the potential to regenerate the NP and provide mechanical support, whilst reducing the catabolic phenotype of degenerate NP cells, as a treatment strategy for IVD degeneration. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 21 - 21
1 May 2017
Thorpe A Vickers L Sammon C Le Maitre C
Full Access

Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue. Methods. hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O. 2. for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the phenotype of injected hMSC was assessed by histology and immunohistochemistry. Mechanical properties were also assessed via dynamic mechanical analysis (DMA). Results. No significant difference in the elastic modulus was observed between NPgel injected NP tissue and media injected controls. CFSe positive hMSCs were identified in all injected tissue samples and cell viability was maintained. Where hMSCs were delivered via NPgel, the hydrogel integrated with native NP tissue and cells producing NP matrix components: aggrecan; collagen type II and chondroitin sulphate. Conclusion. hMSC incorporated within L-pNIPAM-co-DMAc hydrogel and injected into NP explants, integrate with native NP tissue and promote differentiation towards the NP phenotype; thus potentially could be used to regenerate the NP as a treatment strategy for LBP. No conflict of interest. Funding: BMRC, MERI Sheffield Hallam University


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.

Cite this article: Bone Joint Res 2013;2:169–78.