Vancomycin -impregnated bonechips from a human morselized femoral head allograft (BCs) are used in orthopaedic surgery to treat infections. Literature suggests that bonechips can be efficient vancomycin carriers, but due to the diversity in the type of bonechips, of impregnation and of method used to evaluate AB release, there are no uniform guidelines. We performed an in vitro study to examine the release of vancomycin from solution-impregnated deepfrozen processed bonechips. Quantification was performed using a fully validated chromatographic method. Results were compared with the elution-profile from Osteomycin®, a commercially available lyophilised processed bonegraft. Different vancomycine impregnation-concentrations and impregnation-durations of frozen processed bonechips were investigated. After impregnation, bonechips were rinsed with saline in order to determine only the absorbed vancomycin. Elution was performed in newborn calf serum at 37°C. Eluted vancomycin concentrations were determined using Ultra Performance Liquid
Aim. Prosthetic joint infections (PJI) remain a great challenge in orthopedic surgery with a high mortality rate. It is particularly complicated by biofilms and infections caused by Methicillin-resistant Staphylococcus aureus (MRSA). It concurrently shields bacteria from host immune responses and confers resistance to antibiotics. This study aims to investigate the efficacy of radioimmunotherapy as an innovative therapeutic modality to address the challenges posed by MRSA and its biofilm. Method. We induced specific monoclonal antibodies 4497-IgG1 as carriers, which target wall teichoic acids (WTA) existing on MRSA and its biofilm. Radionuclides actiniumr-225 (. 225. Ac, α-emitter) and lutetium-177 (. 177. Lu, β-emitter) were conjugated with mAbs using DOTA as chelator. Quality control was assessed using thin layer
Aim. Dalbavancin is a lipoglycopeptide with a broad antimicrobial spectrum against Gram-positive bacteria and effect against microorganisms in biofilm in vitro. Its pharmacokinetic properties, with an exceptionally long half-life of approximately 300 hours, allow for simplified administration that may be of value in the long-term treatment of bone and joint infections, such as prosthetic joint infections (PJIs). Several case reports and case series with “off-lable” treatment with dalbavancin of PJIs exist, but the optimal dosing regimen remains to be defined. Therapeutic drug monitoring (TDM) is recommended for treatment with >2 doses of dalbavancin. In the absence of TDM, the Swedish national guidelines for bone and joint infections (2023, . www.infektion.net. ) recommends a loading dose of dalbavancin 1,500 mg on day 1 and 1,500 mg on days 8 – 14, after which from day 28 1,000 mg is given biweekly or 500 mg every week. The aim of the present study was to determine trough levels of dalbavancin in patients with long-term treatment of PJIs according to the national guidelines. Method. Twelve patients with PJI were treated with at least 6 doses of dalbavancin, of which the first two doses were 1500 mg and the following doses were 1000 every second week, and prospectively sampled biweekly for determination of serum concentrations (trough levels) of dalbavancin which was measured by liquid
Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the posterior column and often involve the lumbar spine. Accordingly, the objective was to compare the perioperative tissue concentrations of cefuroxime in the anterior and posterior column of the same lumbar vertebra using microdialysis in an experimental porcine model. Method. The lumbar vertebral column was exposed in 8 female pigs. Microdialysis catheters were placed for sampling in the anterior column (vertebral body) and posterior column (posterior arch) within the same vertebra (L5). Cefuroxime (1.5 g) was administered intravenously over 10 min. Microdialysates and plasma samples were continuously obtained over 8 hours. Cefuroxime concentrations were quantified by Ultra High Performance Liquid
Bone is a connective tissue that undergoes constant remodeling. Any disturbances during this process may result in undesired pathological conditions. A single nucleotide substitution (596T-A) in exon eight which leads to a M199K mutation in human RANKL was found to cause osteoclast-poor autosomal recessive osteopetrosis (ARO). Patients with ARO cannot be cured by hematopoietic stem cell transplantation and, without proper treatments, will die in their early age. To date, how this mutation alters RANKL function has not been characterized. We thus hypothesized that hRANKL M199 residue is a structural determinant for normal RANKL-RANK interaction and osteoclast differentiation. By sharing our findings, we aim to achieve an improved clinical outcome in treating bone-related diseases such as osteoporosis, ARO and osteoarthritis. Site-directed mutagenesis was employed to create three rat RANKL mutants, replacing the methionine 200 (human M199 equivalent residue) with either lysine (M200K), alanine (M200A) or glutamic acid (M200E). Recombinant proteins were subsequently purified through affinity
Aim. Allograft bone chips used in complex bone reconstruction procedures are associated with an increased infection risk. The perioperative use of systemic cefazolin is standard to prevent infection, but is less effective in the presence of avascular bone grafts. Bone chips have been described as a carrier for local delivery of antibiotics, but impregnation with cefazolin in a prophylactic setting has not been described. We aimed to obtain a prolonged cefazolin release from bone chips to maximize the prophylactic effect. Method. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were incubated for 20 min- 4h under atmospheric pressure or under vacuum. Cefazolin elution of bone chips was carried out in fetal bovine serum and analyzed by Ultra Performance Liquid
Aim. Cefuroxime is a time-dependent antibiotic widely used as intravenous perioperative prophylaxis in spine surgery. A previous study has indicated that a single dose of cefuroxime provided insufficient spine tissue concentrations for spine procedures lasting more than 2–3 hours. Due to the fact that postoperative pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates, we aimed to evaluate if a twofold increase of standard dosage of 1.5g cefuroxime given as one double dose or two single doses with 4-hours intervals will lead to sufficient cefuroxime spine tissue concentrations throughout the dosing interval. Method. This is preliminary data for 8 out of 16 female pigs. Data from all 16 pigs will be included for the conference. Eight pigs were randomized into two groups: Group A received one double dose of cefuroxime (3g) as a bolus, and Group B received two single doses of cefuroxime (2×1.5g) with 4-hours intervals. Measurements were obtained from plasma, subcutaneous tissue (SCT), vertebral cancellous bone and the intervertebral disc (IVD) for 8-hours thereafter. Microdialysis was applied for sampling in solid tissues. The cefuroxime concentrations were determined using ultra-high performance liquid
Periprosthetic infection remains a clinical challenge that may lead to revision surgeries, increased spending, disability, and mortality. The cost for treating hip and knee total joint infections is anticipated to be $1.62 billion by 2020. There is a need for implant surface modifications that simultaneously resist bacterial biofilm formation and adhesion, while promoting periprosthetic bone formation and osseointegration. In vitro research has shown that nanotextured titanium promotes osteoblast differentiation, and upregulates metabolic markers of osteoblast activity and osteoblast proliferation. In vivo rat studies confirmed increased bone-implant contact area, enhanced de novo bone formation on and adjacent to the implant, and higher pull-out forces compared to non-textured titanium. The authors have advanced a benign electrochemical anodization process based on ammonium fluoride that creates a nanotube surface in as little as 10 minutes (Fig. 1), which can also integrate antibacterial nanosilver (Fig. 2). The work reported here summarizes in vitro post-inoculation and in vivo post-implantation studies, showing inherent inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by titanium surfaces with nanotubes (TiNT), nanotubes with nanosilver (TiNT+Ag), plain (Ti), and thermal plasma sprayed (TPS) titanium. Ti6Al4V was the base material for all surfaces. In vitro studies evaluated Ti, TPS, four TiNT groups with varying nanotube diameters (60nm, 80nm, 110nm, 150nm), and TiNT+Ag. After seeding with MRSA (10. 5. , 10. 6. , and 10. 8. CFU/mL), the 110nm diameter nanotubes showed MRSA inhibition up to three-orders of magnitude lower than the Ti and TPS surfaces at 2, 6, and 48 hours. Following on the in vitro results, New Zealand White rabbits underwent a bilateral implantation of intramedullary tibial implants of the four material groups (4 mm outside diameter; 110nm NT diameter on TiNT and TiNT+Ag implants). One intramedullary canal was inoculated with clinically-derived MRSA (10. 5. CFU in broth) at the time of implantation; one canal had only culture media introduced (control). At a 2-week endpoint, limbs were harvested for analysis, including implant sonication with sonicant bacterial cultured, histology, and microcomputed
Aim. Pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates. Nevertheless, tissue pharmacokinetic studies of relevant antimicrobials in both prophylactic and therapeutic situations are still sparse. Previous approaches based on bone biopsy and discectomy exhibit important methodological limitations. The objective of this study was therefore to assess the concentration of cefuroxime in intervertebral disc (IVD), vertebral body cancellous bone, subcutaneous adipose tissue (SCT) and plasma pharmacokinetics after single dose administration by use of microdialysis (MD) in a large animal model. Method. Ten female pigs were assigned to receive 1,500 mg of cefuroxime intravenously over 15 min. Measurements of cefuroxime were obtained from plasma, SCT, the vertebral cancellous bone and the IVD for 8 hours thereafter. MD was applied for sampling in solid tissues. The cefuroxime concentration in both the MD and plasma samples was determined using ultra-high performance liquid
Aim. The incidence of orthopaedic methicillin-resistant staphylococcus aureus infections is increasing. Vancomycin may therefore play an increasingly important role in orthopaedic perioperative antimicrobial prophylaxis. Adequate antimicrobial concentrations at target site is essential for prevention of orthopaedic infections. Current studies investigating perioperative bone and soft tissue concentrations of vancomycin are sparse and challenged by a lack of appropriate methods. The aim of this study was therefore to assess the concentration of vancomycin in plasma, subcutaneous tissue and bone after single dose administration using microdialysis (MD) in patients undergoing total knee replacement. Method. 1,000 mg of vancomycin was postoperatively administered intravenously over 100 minutes to 10 male patients undergoing primary total knee replacement. Vancomycin concentrations in plasma, subcutaneous tissue (SCT), cancellous and cortical bone were measured the following 8 hours. MD was applied for sampling in solid tissues. The vancomycin concentration in MD-samples was determined using ultra-high performance liquid
Aim. Thermal stability is a key property determining the suitability of an antibiotic agent for local application. Long-term data describing thermal stability without interference from carrier materials are scarce. Method. In this study, a total of 38 common antibiotic agents have been maintained at 37 °C in saline solution, and degradation and antibacterial activity assessed over 6 weeks. The impact of an initial supplementary heat exposure mimicking exothermically-curing bone cement has also been tested. Antibiotic degradation was assessed by
Aim. To prevent infections after orthopaedic surgery, intravenous antibiotics are administered perioperatively. Cefazolin is widely used as the prophylactic antibiotic of choice. Systemic antibiotic therapy may however be less effective in longstanding surgery where bone allografts are used. Bone chips have been shown to be an effective carrier for certain types of antibiotics and may provide the necessary local antibiotic levels for prophylaxis. To be efficient a prolonged release is required. In contrast to vancomycin with proven efficient prolonged release from Osteomycin, this has not been described for cefazolin. We developed a protocol to bind cefazolin to bone chips by means of a hydrogel composed of proteins naturally present in the human body. Method. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were either incubated for 20 min- 4h or also treated with vacuum. Cefazolin elution of bone chips was carried out in fetal bovine serum and analysed by Ultra Performance Liquid
Introduction. There is interest in minimally invasive solutions that reduce osteoarthritic symptoms and restore joint mobility in the early stages of cartilage degeneration or damage. The aim of the present study was to evaluate the Biolox®delta alumina-zirconia composite as a counterface for articulation against live cartilage in comparison to the clinically relevant CoCrMo alloy using a highly controlled in vitro ball-on-flat articulation bioreactor that has been shown to rank materials in accord with clinical experience. Methods. The four-station bioreactor was housed in an incubator. The dual axis concept of this simulator approximates the rolling-gliding kinematics of the joint. Twelve 32 mm alumina-zirconia composite femoral heads (Biolox®delta, CeramTec GmbH, Germany) and twelve 32 mm CoCrMo femoral heads (Peter Brehm GmbH, Germany) made up the testing groups. Each head articulated against a cartilage disk of 14 mm diam., harvested from six months old steers. Free-swelling control disks were obtained as well. Testing was conducted in Mini ITS medium for three hours daily over 10 days applying a load of 40 N (∼2 MPa). PG/GAG was determined using the dimethylmethylene blue (DMMB) assay. Hydroxyproline was analyzed by high performance liquid
In Denmark the most common postoperative pathogen is S. aureus (1), sensitive to dicloxacillin. These bacteria can cause a postoperative infection despite using prophylactic antibiotics. Whether the tissue concentration reached is above the minimal inhibitory concentration (MIC) for the pathogens is unknown, and if lower than expected could result in a postoperative infection. Thus a trial was conducted, measuring the actual tissue concentration of dicloxacillin in human muscle and adipose tissue and compared these to the plasma concentration. MIC for dicloxacillin against S. aureus was determined using the broth macrodilution method. Six healthy male volunteers aging 25 to 27 years (body-mass-index; 20–28), were recruited. A CMA63 (Mdialysis, Stockholm, Sweden) catheter was placed in the subcutaneous tissue of the abdomen and in the rectus muscle of the thigh and the volunteers given 2 g dicloxacillin intravenously over 5 minutes. In 10 min intervals for the following 6 hours, samples from blood and Microdialysis fluid (flowrate 5 ml/min) were collected. Recovery was determined in vitro. Plasma was isolated from blood samples. The unbound dicloxacillin was isolated from plasma using filter plates (AcroPrep 30K Omega, Pall Corporation, US) centrifuged for 30 minutes at 1000 × g and 37°C. All samples were analyzed with High Performance Liquid
The ATTUNE™ Knee System (DePuy Synthes) comprises of a tibial insert that is made from AOX™, an antioxidant-stabilized polyethylene. The antioxidant used in AOX is pentaerythritol tetrakis [3-(3, 5-di-tertiary butyl-4-hydroxyphenyl)] propionate (PBHP). A biological risk assessment of the degradation products arising from PBHP has been performed. This assessment focuses on the requirements of ISO 10993–1:2009, ISO 14971:2007, and the Medical Device Directive 93/42/EEC. Because the orthopedic implant is a permanent implant, consideration has been given to all relevant endpoints defined by ISO 10993–1 Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process. Comprehensive biocompatibility testing including long-term (26 weeks) subcutaneous implantation has been conducted which confirms the biosafety of the polyethylene compound[1]. In addition to the biological safety testing completed, the overall safety and the associated toxicological risk of exposure to degradation products of PBHP has been given due consideration. The guidelines for the Threshold for Toxicological Concern (TTC) provided by The Product Quality Research Institute (PQRI) Leachables and Extractables Working Group were used in the assessment[2]. This working group is a collaboration of chemists and toxicologists from the U.S. Food and Drug Administration (FDA), industry, and academia. The TTC principle allows safety assessment in the absence of substance-specific hazard data, based on very low levels of exposure to that substance. A Margin of Safety (MOS) is calculated as the ratio of the threshold safety value to the actual exposure quantities determined and used in the assessment. A MOS value greater than 1 is typically judged by risk assessors and regulatory bodies to be unlikely to cause harm and the risk may be considered low. The identity of the degradation products as well as the corresponding 30-day leachable quantities from a water:acetone extraction media has been previously reported [3] and provided here (Table 1). The amount of leachables determined from Table 1 for all products were well below the TTC of 150 ng/device and hence no toxicological risks were identified for these compounds. In order to further examine the toxicological risk assessment, aggressive extraction using Dynamic Head Space (DHS) extraction was done and analytical testing was performed on the degradation products of PBHP using gas
It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of allograft bone by alteration of collagen triple helix or cross-links. Our aim was to investigate the mechanical and biological performance, cross-links and degraded collagen content of irradiated bone allografts. Human femoral shafts were sectioned into cortical bone beams (40 × 4 × 2 mm) and irradiated at 0, 5, 10, 15, 20, and 25 kGy for three-point bending tests. Corresponding cortical bone slices were used for in vitro determination of macrophage activation, osteoblast proliferation and attachment, and osteoclast formation and fusion. Subsequently, irradiated cortical bone samples were hydrolised for determination of pyridinoline (PYD), deoxypyridinoline (DPD), and pentosidine (PEN) by high performance liquid
Despite modern surgical techniques, reported rates of deep infection following Total Knee Replacement (TKR) persist between 1–2.5%. Coagulase-negative staphylococcus (CNS) has become the most common causative organism, and while growth of CNS is more indolent thanstaphylococcus aureus, it has a relatively higher minimum inhibitory concentration (MIC) against cephalosporins. Tissue concentrations of prophylactic antibiotics may fall below this level during TKR with conventional ‘systemic’ dosing. Regional administration of prophylactic antibiotics via a foot vein following tourniquet inflation has been shown to provide tissue concentrations approximately 10 times higher than systemic dosing, however cannulation of a foot vein is difficult, time consuming, and may compromise sterility. Intraosseous cannulation offers an alternative method of accessing the vascular system, and the aim of this study was to assess its effectiveness in administration of prophylactic antibiotics. 22 patients undergoing primary total knee arthroplasty were randomised into two groups. Group 1 received 1g of cephazolin systemically 10 minutes prior to tourniquet inflation. In Group 2 the EZ-IO tibial cannulation system was used, and 1g of cephazolin was administered intraosseously in 200ml of normal saline following tourniquet inflation and prior to skin incision. Subcutaneous fat and femoral bone samples were taken at set intervals during the procedure, and antibiotic concentrations measured using High Performance Liquid