Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PHARMACOKINETICS OF SINGLE-DOSE CEFUROXIME IN PORCINE INTERVERTEBRAL DISC AND VERTEBRAL CANCELLOUS BONE DETERMINED BY MICRODIALYSIS

European Bone and Joint Infection Society (EBJIS), Nantes, France, September 2017



Abstract

Aim

Pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates. Nevertheless, tissue pharmacokinetic studies of relevant antimicrobials in both prophylactic and therapeutic situations are still sparse. Previous approaches based on bone biopsy and discectomy exhibit important methodological limitations. The objective of this study was therefore to assess the concentration of cefuroxime in intervertebral disc (IVD), vertebral body cancellous bone, subcutaneous adipose tissue (SCT) and plasma pharmacokinetics after single dose administration by use of microdialysis (MD) in a large animal model.

Method

Ten female pigs were assigned to receive 1,500 mg of cefuroxime intravenously over 15 min. Measurements of cefuroxime were obtained from plasma, SCT, the vertebral cancellous bone and the IVD for 8 hours thereafter. MD was applied for sampling in solid tissues. The cefuroxime concentration in both the MD and plasma samples was determined using ultra-high performance liquid chromatography.

Results

For both the IVD and the vertebral cancellous bone, the area under the concentration-curve from zero to the last measured value was significantly lower than that of free plasma. Tissue penetration of cefuroxime was incomplete for the IVD, whereas for vertebral cancellous bone and SCT it was not. Furthermore, the penetration of cefuroxime from plasma to IVD was delayed. Additionally, a noticeable prolonged elimination rate of cefuroxime in the IVD was found. The maximal concentration and the elimination of cefuroxime were reduced in IVD compared to both SCT and vertebral cancellous bone. Due to this delay in elimination of cefuroxime, the time with concentrations above the minimal inhibitory concentration (T>MIC) was significantly higher in IVD than in SCT, vertebral cancellous bone and free plasma for MICs up to 6 μg/ml.

Conclusions

MD was successfully applied for serial assessment of the concentration of cefuroxime in the IVD and the vertebral cancellous bone. Penetration of cefuroxime from plasma to IVD was found to be incomplete and delayed, but due to a prolonged elimination, the best results regarding T>MIC was found in IVD.


E-mail: