We have performed a prospective, single-surgeon study analysing the histological results of autologous chondrocyte implantation. Fourteen patients underwent autologous chondrocyte implantation of the knee and were evaluated at one year by clinical assessment and arthroscopy. Standard staining was used to examine the sections. In addition, Eight patients regenerated hyaline cartilage and also contained type-X collagen in the deepest layers and type-II collagen in the deep layers. Three demonstrated fibrocartilage and had type-II collagen in the deep layers. We have shown that one year after the initial implantation chondrocytes are capable of producing type-II collagen and that they continue to proliferate and mature.
Articular cartilage (AC) and subchondral bone (SB) are intimately intertwined, forming a complex unit called the AC-SB interface. Our recent studies have shown that cartilage and bone marrow are connected by a three-dimensional network of microchannels (i.e. cartilage-bone marrow microchannel connector; CMMC), which differ microarchitecturally in number, size and morphology depending on the maturation stage of the bone and the region of the joint. However, the pathological significance of CMMC is largely unknown. Here, we quantitatively assessed how CMMC microarchitecture relates to cartilage condition and regional differences in early idiopathic osteoarthritis (OA). Two groups of cadaveric female human femoral heads (intact cartilage vs early cartilage lesions) were identified and biopsy-based high-resolution micro-CT imaging was used. Subchondral bone (SB) thickness, CMMC number, maximum and minimum CMMC size, and CMMC morphology were quantified and compared between the two groups. The effect of joint region and cartilage condition on each dependent variable was examined. The number and morphology of CMMCs were influenced by the region of the joint, but not by the cartilage condition. On the other hand, the minimum and maximum CMMC size was modified by both joint location and cartilage condition. The smallest CMMCs were consistently found in the load bearing region (LBR) of the joint. Compared to healthy subjects, the size of the microchannels was increased in early OA, most notably in the non-load bearing region (NLBR) and the peripheral rim (PR) of the femoral head. In addition, subchondral bone thinning was observed in early OA as a localized event associated with areas of partial
Our objective was to conduct a systematic review and meta-analysis, comparing differences in clinical outcomes between either autologous or synthetic bone grafts in the operative management of tibial plateau fractures: a traumatic pattern of injury, associated with poor long-term functional prognosis. A structured search of MEDLINE, EMBASE, The Bone & Joint and CENTRAL databases from inception until 07/28/2021 was performed. Randomised, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture non-union or
Abstract. Objectives. The aim of this work was to compare the different techniques and the different fluid permeability of the tissue following each technique through assessing the flow of radiopaque contrast agent using μCT image analysis and 3D modelling. Methods. Donated human tali specimens (n=12) were prepared through creating a 10mm diameter
Abstract. Objectives. Meniscus allograft and synthetic meniscus scaffold (Actifit. ®. ) transplantation have shown promising outcomes for symptoms relief in patients with meniscus deficient knees. Untreated
Surgical microfracture is considered a first line treatment for talar osteochondral defects. Pain reduction, functional improvement and patient satisfaction are described to be 61–86% in both primary and secondary osteochondral defects. However, limited research is available whether improvement of the surgical technique is possible. We do know that the current rigid awls and drills limit the access to all locations in human joints and increase the risk of heat necrosis of bone. Application of a flexible water jet instrument to drill the microfracture holes can improve the reachability of the defect without inducing thermal damage. The aim of this study is to determine whether water jet drilling is a safe alternative compared to conventional microfracture awls by studying potential side effects and perioperative complications, as well as the quality of cartilage repair tissue in a caprine model. 6 mm diameter talar
Articular cartilage repair is assumed to improve by covering the cartilage lesion with a biomaterial scaffold tailored to the specific requirements of the weight-bearing joint surface. We have tested the feasibility of a novel composite collagen-polylactide scaffold rhCo-PLA in cartilage repair. To confirm these results and further challenge the scaffold, we tested it in a large porcine cartilage defect. A critical-sized full-thickness
Abstract. Purpose. Stratification is required to ensure that only patients likely to benefit, receive Autologous Chondrocyte Implantation (ACI). At Stage I (SI), healthy cartilage is harvested from the joint and chondrocytes culture expanded before being implanted into a
Background. Autologous Chondrocyte Implantation (ACI) is frequently used to treat
Summary. Nasal Chondrocytes are safe and feasible for tissue engineering approaches in articular cartilage repair. Introduction. As compared to articular chondrocytes (AC), nasal septum chondrocytes (NC) proliferate faster and have a higher and more reproducible capacity to generate hyaline-like cartilaginous tissues. Moreover, the use of NC would allow reducing the morbidity associated with the harvesting of cartilage biopsy from the patient. The objective of the present study was to demonstrate safety and feasibility in the use of tissue engineered cartilage graft based on autologous nasal chondrocytes for the repair of articular defect in goats. Methods. Isolated autologous NC and AC from 6 goats were expanded and GFP-labelled before seeding 4×10. 4. cells/cm. 2. on a type I/III collagen membrane (Chondro-Gide®, Geistlich). After 2 weeks of chondrogenic differentiation 2 NC- and 2 AC-based grafts were implanted into
Background. Autologous Chondrocyte Implantation (ACI) is a procedure which is gaining acceptance for the treatment of cartilage defects in the knee with good results and a long term durable outcome. Its use in other joints has been limited, mainly to the ankle. We aimed to assess the outcome of ACI in the treatment of chondral and osteochondral defects in the hip. Methods. Fifteen patients underwent ACI for chondral or osteochondral defects in the femoral head with a follow up of upto 8 years (mean of 2 years) in our institution with a mean age of 37 years at the time of operation. Pre-operatively hip function was assessed by using the Harris Hip Score and MRI. Post-operatively these were repeated at 1 year and hip scores repeated annually. Failure was defined as a second ACI to the operated lesion or a conversion to a hip resurfacing or replacement. Results. The mean pre-op Harris Hip Score (HHS) was 55 which increased to 63 at 1 year and 70 at the latest follow up. Patients who underwent ACI for cartilage defects secondary to trauma (four) were better with a mean HHS of 69 at a mean follow up of 3.5 years. Six patients underwent THR at a mean of 32 months and were classed as failures. Five patients had evidence of avascular necrosis (AVN) of the femoral head post operatively of which four AVN pre-op. Conclusion. These early results suggest that ACI could be a viable option for the treatment of isolated
Summary. The findings demonstrate that culture expanded human mesenchymal stem cells (MSCs) incorporated and proliferated in clinically relevant cell scaffolds better than freshly isolated bone marrow mononucleated cells (MNCs); in fact, only in MSC cultures were cells present for longer term chondrogenic inductions. Introduction. The treatment of
In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.Objectives
Methods
The treatment of osteochondral lesions and osteoarthritis
remains an ongoing clinical challenge in orthopaedics. This review
examines the current research in the fields of cartilage regeneration,
osteochondral defect treatment, and biological joint resurfacing, and
reports on the results of clinical and pre-clinical studies. We
also report on novel treatment strategies and discuss their potential
promise or pitfalls. Current focus involves the use of a scaffold
providing mechanical support with the addition of chondrocytes or mesenchymal
stem cells (MSCs), or the use of cell homing to differentiate the
organism’s own endogenous cell sources into cartilage. This method
is usually performed with scaffolds that have been coated with a
chemotactic agent or with structures that support the sustained
release of growth factors or other chondroinductive agents. We also
discuss unique methods and designs for cell homing and scaffold
production, and improvements in biological joint resurfacing. There
have been a number of exciting new studies and techniques developed
that aim to repair or restore osteochondral lesions and to treat
larger defects or the entire articular surface. The concept of a
biological total joint replacement appears to have much potential. Cite this article:
The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.Objectives
Methods
We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface.
Osteoarthritis (OA) is an important cause of
pain, disability and economic loss in humans, and is similarly important in
the horse. Recent knowledge on post-traumatic OA has suggested opportunities
for early intervention, but it is difficult to identify the appropriate
time of these interventions. The horse provides two useful mechanisms
to answer these questions: 1) extensive experience with clinical
OA in horses; and 2) use of a consistently predictable model of
OA that can help study early pathobiological events, define targets
for therapeutic intervention and then test these putative therapies.
This paper summarises the syndromes of clinical OA in horses including
pathogenesis, diagnosis and treatment, and details controlled studies
of various treatment options using an equine model of clinical OA.
The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage. Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02). We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.
Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 ( The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.