Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SUBCHONDRAL MICROCHANNEL NETWORK CHANGES IN EARLY OSTEOARTHRITIS

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 1 of 2.



Abstract

Articular cartilage (AC) and subchondral bone (SB) are intimately intertwined, forming a complex unit called the AC-SB interface. Our recent studies have shown that cartilage and bone marrow are connected by a three-dimensional network of microchannels (i.e. cartilage-bone marrow microchannel connector; CMMC), which differ microarchitecturally in number, size and morphology depending on the maturation stage of the bone and the region of the joint. However, the pathological significance of CMMC is largely unknown. Here, we quantitatively assessed how CMMC microarchitecture relates to cartilage condition and regional differences in early idiopathic osteoarthritis (OA).

Two groups of cadaveric female human femoral heads (intact cartilage vs early cartilage lesions) were identified and biopsy-based high-resolution micro-CT imaging was used. Subchondral bone (SB) thickness, CMMC number, maximum and minimum CMMC size, and CMMC morphology were quantified and compared between the two groups. The effect of joint region and cartilage condition on each dependent variable was examined.

The number and morphology of CMMCs were influenced by the region of the joint, but not by the cartilage condition. On the other hand, the minimum and maximum CMMC size was modified by both joint location and cartilage condition. The smallest CMMCs were consistently found in the load bearing region (LBR) of the joint. Compared to healthy subjects, the size of the microchannels was increased in early OA, most notably in the non-load bearing region (NLBR) and the peripheral rim (PR) of the femoral head. In addition, subchondral bone thinning was observed in early OA as a localized event associated with areas of partial chondral defect.

Our data suggest an enlargement of the SB microchannel network and a collective structural deterioration of the SB in early idiopathic OA.


Email: