When inserting a femoral stem, surgeons make use of many visual and tactile cues to be sure that the implant is correctly sized and well-seated. One such cue is the change of pitch that can be heard when the final femoral broach is inserted. This is known to be important, but has not been widely studied. We set out to analyse the sounds produced during femoral broaching and implant fixation, and to discover whether the absence of these sounds could predict a poor fixation. We recorded the sound of femoral broaching and definitive implant insertion, for twenty un-cemented Corail total hip replacements. Procedures were performed by the same surgeon, in the same theatre. The recordings were visualised using audio editing software, and a Fast Fourier Transform was used to identify the dominant audio frequencies. In 19 of the 20 cases, the final strikes of the final femoral broach displayed a distinctive pattern, with the most prominent frequencies being harmonics (multiples of a fundamental frequency) which had a wavelength directly related to the length of the femoral canal. This contrasts with initial strikes, where multiple unrelated frequencies were present. Postoperative radiographs were examined by two surgeons independently, to assess implant sizing and positioning. The one case, in which the harmonic pattern was not observed, was found on radiographs to be an undersized, varus malpositioned implant. We demonstrate that a characteristic frequency pattern is present when impacting cancellous bone with a well-sized and well-placed femoral broach. When the pattern was absent, the broach and implant were undersized and malpositioned. We hypothesise that this pattern arises when broach and femur are vibrating as one, indicating adequate contact with, and compression of, cancellous bone.
The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.Aims
Methods
Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented
The 10 year survivorship of THR is generally over 95%. However, the incidence of revision is usually higher in year one. The most common reason being dislocation which at least in part is driven by inadequate range of motion (ROM) leading to impingement, subluxation and ultimately dislocation which is more frequently posterior. ROM is affected by patient activity, bone and component geometry, and component placement. To reduce the incidence of dislocation, supported by registry data, there has been an increase in the use of so-called ‘lipped’ liners. Whilst this increases joint stability, the theoretical ROM is reduced. The aim of this study was to investigate the effect of lip placement on impingement. A rigid body geometric model was incorporated into a CT scan hemi-pelvis and femur, with a clinically available THR virtually implanted. Kinematic activity data associated with dislocation was applied, comprising of five posterior and two anterior dislocation risk activities, resulting from anterior and posterior impingement respectively. Cup inclination and anteversion was varied (30°-70°, 0°-50° respectively) to simulate extremes of clinical outcomes. The apex position of a ‘lipped’ liner was rotated from the superior position, anteriorly and posteriorly in steps of 45°. Incidence and location of implant and bone impingement was recorded in 5346 cases generated. A liner with the lip placed superior increased the occurrence of implant-implant impingement compared with a neutral liner. Rotation of the lip from superior reduced this incidence. This effect was more marked with posterior rotation which after 90° reduced anterior impingement to levels similar to a neutral liner. Complete inversion of the lipped liner reduced impingement, but this and anterior rotation both negate its function – additional stability. This study comprises one
Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented
Introduction and Objective. Individuals with type 2 diabetes (T2D) have a 3-fold increased risk of bone fracture compared to non-diabetics, with the majority of fractures occurring in the hip, vertebrae and wrists. However, unlike osteoporosis, in T2D, increased bone fragility is generally not accompanied by a reduction in bone mineral density (BMD). This implies that T2D is explained by poorer bone quality, whereby the intrinsic properties of the bone tissue itself are impaired, rather than bone mass. Yet, the mechanics remain unclear. The objective of this study is to (1) assess the fracture mechanics of bone at the structural and tissue level; and (2) investigate for changes in the composition of bone tissue along with measuring total fluorescent advanced glycation end products (fAGEs) from the skin, as T2D progresses with age in Zucker diabetic fatty (ZDF (fa/fa)) and lean Zucker (ZL (fa/+)) rats. Materials and Methods. Right ulnae and skin sections were harvested from ZDF (fa/fa) (T2D) and ZL (fa/+) (Control) rats at 12 and 46 weeks (wks) of age (n = 8, per strain and age) and frozen. Right ulnae were thawed for 12 hrs before micro-CT (μCT) scanning to assess the microstructure and measure BMD. After scanning, ulnae were loaded until failure via three-point bending. Fourier transform-infrared microspectroscopy (FTIR) was used to measure various bone mineral- and collagen-related parameters such as, mineral-to-matrix ratio and nonenzymatic cross-link ratio. Finally, fAGEs were measured from skin sections using fluorescence spectrometry and an absorbance assay, reported in units of ng quinine/ mg collagen. Results. At 12 and 46 wks bone size was significantly smaller in length (p < 0.01), cortical area (p < 0.001) and cross-sectional moment of inertia (p < 0.001) in T2D rats compared to age-matched controls. A slight reduction in BMD was observed in T2D rats compared to controls at both ages, however, this was not significant. Structural properties of T2D bone were significantly altered at 12 and 46 wks, with bending rigidity increasing approximately 2.5-fold and 1.5-fold in control and T2D rats with age, respectively (p < 0.0001). Similarly, yield and ultimate moment significantly reduced in T2D rats with age in comparison to controls (p < 0.0001). Energy absorbed to failure was significantly reduced in T2D rats at 46 weeks of age compared to controls (p < 0.01). The amount of energy absorbed to failure increased approximately 1.4-fold from 12 to 46 wks in control rats, however, in T2D rats a reduction was seen with age, although not significant. At 12 wks, there was no significant deficits in tissue material properties, whereas, at 46 wks a significant reduction in yield stress, yield strain and ultimate stress was observed for T2D rats in comparison to controls (p < 0.05). Conclusions. These findings show that longitudinal growth is impaired as early as 12 wks of age and by 46 wks bone size is significantly reduced in T2D rats compared to controls. The reduction in T2D structural properties is likely attributed to the
Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing
Introduction. The objective of this study is to assess the use of ultrasound (US) as a radiation free imaging modality to reconstruct three-dimensional knee anatomy. Methods. An OEM US system is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allowing for 3D tracking of probe and femur and tibia. The raw US RF signals are acquired and using real time signal processing, bone boundaries are extracted. Bone boundaries are then combined with the EM sensor information in a 3D point cloud for both femur and tibia. Using a statistical shape model, the patient specific surface is reconstructed by optimizing
Introduction. An understanding of anatomic variability can help guide the surgeon on intervention strategies. Well-functioning thumb metacarpophalangeal joints (MCPJ) are essential for carrying out typical daily activities. However, current options for arthroplasty are limited. This is further hindered by the lack of a precise understanding of the geometric variation present in the population. In this paper, we offer new insight into the major modes of geometric variation in the thumb MCP using Statistical Shape Modelling. Methods. Ten participants free from hand or wrist disease or injury were recruited for CT imaging (Ethics Ref:14/LO/1059). 1. Participants were sex matched with mean age 31yrs (range 27–37yrs). Metacarpal (MC1) and proximal phalanx (PP1) bone surfaces were identified in the CT volumes using a greyscale threshold, and meshed. The ten MC1 and ten PP1 segmented bones were aligned by estimating their principal axes using Principal Component Analysis (PCA), and registration was performed to enable statistical comparison of the position of each mesh vertex. PCA was then used again, to reduce the dimensionality of the data by identifying the main ‘modes’ of independent size and shape variation (principal components, PCs) present in the population. Once the PCs were identified, the variation described by each PC was explored by inspecting the shape change at two standard deviations either side of the mean bone shape. Results. For the ten MC1s, over 80% of the variation was described by the first two PCs (Table 1). Figure 1 shows the effect of the variation in PC1. The majority of geometric variation of the ten PP1s was also described by the first two PCs, with PC1 describing 78.9%. Figure 2 shows the effect of this component on the mean
Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). As a closed chain exercise, it has great value in rehabilitation and muscle strengthening of hip and knee. During DS, the hip flexion angle approximates the functional range of hip motion risking femoroacetabular impingement in some morphologies. In-vivo HJRF measurements have been limited to instrumented implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). On the other hand, total hip arthroplasty is being increasingly performed in a younger and higher demanding patient population. These patients clearly have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since measurements of HJRF with instrumented prostheses in healthy subjects would be ethically unfeasible, this study aims to report a personalised numerical solution based on inverse dynamics to calculate realistic in-silico HJRF values during DS. Material and methods. Thirty-five healthy males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model.
Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and
Introduction. 3D printed Patient Specific Guides (PSGs) can improve the accuracy of joint-replacement. Pre-operative CT bone models are used to design a PSG that fits the patient's specific
Introduction. Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics. Methods. Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire
INTRODUCTION. Proper ligament engagement is an important topic of discussion for total knee arthroplasty; however, its importance to total ankle arthroplasty (TAA) is uncertain. Ligaments are often lengthened or repaired in order to achieve balance in TAA without an understanding of changes in clinical outcomes. Unconstrained designs increase ankle laxity,. 1. but little is known about ligament changes with constrained designs or throughout functional activity. To better understand the importance of ligament engagement, we first investigated the changes in distance between ligament insertions throughout stance with different TAA designs. We hypothesize that the distance between ligaments spanning the ankle joint would increase in specimens following TAA throughout stance. METHODS. A validated method of measuring individual bone kinematics was performed on pilot specimens pre- and post-TAA using a six-degree-of-freedom robotic simulator with extrinsic muscle actuators and motion capture cameras (Figure 1). 2. Reflective markers attached to surgical pins and radiopaque beads were rigidly fixed to the tibia, fibula, talus, calcaneus, and navicular for each specimen. TAAs were performed by a fellowship-trained foot and ankle surgeon on two specimens with separate designs implanted (Cadence & Salto Talaris; Integra LifeSciences; Plainsboro, NJ). Each specimen was CT-scanned after robotic simulations of stance pre- and post-TAA. Specimens were then dissected before a 3D-coordinate measuring device was used to digitize the ligament insertions and beads. Ligament insertions were registered onto the
Introduction. A good anatomic fit of a Total Knee Arthroplasty is crucial to a good clinical outcome. The big variability of anatomies in the Asian and Caucasian populations makes it very challenging to define a design that optimally fits both populations. Statistical Shape Models (SSMs) are a valuable tool to represent the morphology of a population. The question is how to use this tool in practice to evaluate the morphologic fit of modern knee designs. The goal of our study was to define a set of
Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and
Introduction. Total knee arthroplasty is the standard treatment for advanced knee osteoarthritis. Patient-specific instrument (PSI)has been reported by several authors using different techniques produced by implant companies. The implant manufacturers produce PSI exclusively for their own knee implants and for easy straightforward cases. However, the PSI has become very expensive and unusable as a universal or an open platform. In addition, planning the implant is done by technicians and not by surgeons and needs long waiting time before surgery (6 weeks). Methods. We proposed a new technique which is a device and method for preparing a knee joint in a patient undergoing TKA surgery of any knee implant (prosthesis). The device is patient specific, based on a method comprised of image-based 3D preoperative planning (CT, MRI or computed X-ray) to design the templates (PSI) that are used to perform the knee surgery by converting them to physical templates using computer-aided manufacturing such as computer numerical control (CNC) or additive-manufacturing technologies. The device and method are used for preparing a knee joint in a universal and open-platform fashion for any currently available knee implant. Results. All patient-specific implants and any knee implant could be produced. The technique was applied on NExGen implant (Zimmer)on 21 patients, PFC implant (Depuy, J & J) on 5 patients, Scorpio NRG implant (Stryker) on 24 patients and SLK Evo implant (Implant International) on 81 patients. The >15 degrees varus gave a mean of 10.44 degrees in 56.67% of cases and the <15 degrees varus gave a mean of 24.04 degrees in 43.33% of cases. The total varus of 5–30 degrees gave a mean of 16.33 degrees in 90.9% of cases and the total valgus of 20–40 gave a mean of 25 degrees in 9.1% of cases. The fixed flexion deformity of < 20 degrees gave a mean of 9.4 degrees in 75.3% of cases while the fixed flexion deformity of >20 gave a mean of 31.87 degrees in 24.7% of cases. Discussion. The system is based on CT images, generic data of implant sizes, average
Introduction. Female gender, old age (men >60y and women > 55y), severe acetabular dysplasia, poor proximal femoral
INTRODUCTION. Mechanical properties mapping based on CT-attenuation is the basis of finite element (FE) modeling with heterogeneous materials and
Title. 3D distribution of cortical bone thickness in the proximal humerus, implications for fracture management. Introduction. CT imaging is commonly used to gain a better understanding of proximal humerus fractures. the operating surgeon however has a limited capacity to evaluate the internal