Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 36 - 36
17 Apr 2023
Davidson D Spratt D Liddle A
Full Access

Prosthetic joint infection (PJI) is an important cause of arthroplasty failure. There is no method to disclose the presence or map the distribution of the in vivo biofilm on infected arthroplasty despite the recognition that such a tool would aid intraoperative decision making and improve novel implant design. The aim of this study was to test the efficacy of four dyes to disclose bacterial biofilm in an in vitro setting. Four dyes with known affinity to bacterial biofilm were assessed to determine their efficacy to disclose biofilms in an in vitro model of PJI. Three dyes (Methylene Blue, Indocyanine Green and Rose Bengal) have established clinical utility and the other, Thioflavin T, is known to fluoresce in the presence of amyloid a known biofilm constituent. The efficacy of the dyes to discriminate between biofilms of different mass and vitality (high, low or the non-inoculated control) was determined after three minutes exposure of the biofilm to the dyes by calculating the amount of dye bound to the biofilm via sonication and spectrophotometry, quantification of the dye through standardised photographic imaging of the stained biofilm and the calculation of inter-observer agreement. Each experiment was performed in triplicate for each dye and repeated three times. For each of the disclosure dyes assessed there was significant difference demonstrated between the amount of dye bound to the high and low mass biofilms (p<0.05) as well as in the amount of dye quantified in photographic and fluorescent image assessment between biofilms of differing mass (p<0.01). There was excellent agreement between three observers, for each disclosure dye, in determining the biofilm mass of each stained disc (Kappa>0.91). This study demonstrates the efficacy of biofilm disclosure dyes in an in vitro PJI model which could one day be used to disclose and map the clinical biofilm in vivo


Prosthetic joint infection (PJI) is a serious complication following joint replacement. Antiseptic solutions are often used for intraoperative wound irrigation particularly in cases of revision for PJI. Antiseptic irrigation is intended to eradicate residual bacteria which may be either free floating or in residual biofilm although there is no clear clinical efficacy for its use. Also, reviewing the scientific literature there is discordance in in vitro results where some studies questions antiseptic efficacy whilst others suggest that even at low concentration antiseptic agents are effective at eradicating bacterial biofilms. The aim of this in vitro study was to establish the efficacy of undiluted antiseptic agents at eradication of a typical PJI forming biofilm and determine the importance of an antiseptic neutralisation step in this assessment. Mature Staphylococcus epidermidis biofilms grown on TiAl6V4 discs were submerged in chlorohexidine (CHL) gluconate 4%, povidone-iodine (PI) 10% or phosphate-buffered saline (PBS) control solution. The discs were then rinsed, the biofilm bacteria suspended in solution using sonication and vortexing, and the viable count (CFU/ml) of the bacterial suspensions determined. The rinse/suspension solution was either (a) PBS or (b) Dey-Engley neutralization broth (NB). When PBS was used to rinse/suspend the biofilm a highly significant, 7.5 and 4.1, mean log reduction in biofilm vitality was observed from the control, for CHL 4% and PI 10%, respectively. However, when NB was the rinse/suspension solution the apparent antiseptic biofilm eradication efficacy was replaced with a statistically significant but clinically irrelevant less the one log-reduction in biofilm vitality. Clinical antiseptic agents are ineffective at eradicating S. epidermidis biofilm in an in vitro PJI model and absence of a neutralisation step gives the false impression of efficacy. Antiseptics alone are an ineffective treatment for biofilm related PJI and no substitute for meticulous debridement


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 84 - 84
1 Jul 2014
Del-Prado G Pascual F Terriza A Molina-Manso D Yubero F Puertolas J Gomez-Barren E Esteban J
Full Access

Summary Statement. A study to evaluate biofilm development on different coatings of UHMWPE was performed. We observed a species-specific effect, with S. aureus affected mainly by DLC-F and S. epidermidis by DLC. These data correlates with previous adherence studies. Introduction. Prosthetic joint infection is intimately related to bacterial biofilms on implant biomaterials. Recently, diamond-like carbon (DLC) coating has been suggested to improve the antibacterial performance of medical grade GUR1050 ultra high molecular weight polyethylene (UHMWPE) supplied by Orthoplastics bacup, UK versus collection and clinical staphylococcal strains. The aim of this study was to make an approximation towards the actual impact of such coatings in biofilm formation. Material and Methods. Biofilm formation by two collection laboratory strains (S. aureus 15981[4] and S. epidermidis ATCC 35984) was evaluated with raw UHMWPE and two UHMWPEs coated with DLC, and fluorine doped DLC (F-DLC). The coated surfaces were obtained by plasma enhanced chemical vapour deposition, as previously described. All the sterilised surfaces were exposed to ≈10. 8. colony forming units/mL during 48 hours at 35° C, with total medium exchange at 24 hours without shaking. Surfaces were carefully washed with PBS (X 3) and then stained with Backlight. ©. live/dead stain for 15 minutes. Confocal Laser Scanning Microscopy was used for sampling the surfaces and studying biofilm, for which eight random series of photographs (Named SERIES) and four predefined biofilm series (Named BIOFILM) were taken. Biofilm thickness (microns) and covered surface by live/dead bacteria (%) were determined for both SERIES and BIOFILM. Assays were made in triplicates. Photographs were analyzed by ImageJ software, and data, by a Mann-Withney test. Results. Biofilm thickness and bacterial coverage per surface type in SERIES as well as BIOFILM for S. aureus and S.epidermidis, respectively is shown. A diminution of these two variables was observed in the coated surfaces versus raw UHWMPE with statistically significant reductions (p≤0.0001). F-DLC was the most effective coated surface versus S. aureus, with the least biofilm thickness and the highest proportional percentage of dead bacteria, and so DLC was versus S. epidermidis. Of interest, the proportion of dead S. epidermidis was higher in raw UHMWPE. Discussion & Conclusions. Staphylococcal biofilm formation on UHMWPE surfaces is irregular. Both biofilm thicknesses as bacterial coverage were lower in DLC and F-DLC. These preliminary data correlate to our previous bacterial adherence findings and support the better anti-adherence performance of DLC coated UHMWPEs. Fluorine is suggested to exhibit a bacteria-dependant behavior, but at present its role is quite far to be known. Further studies using clinical strains of both species are needed to evaluate the accuracy of these results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 99 - 99
1 Nov 2018
Pijls B Sanders I Kuijper E Nelissen R
Full Access

The main problem of infected orthopaedic implants is that the presence of microorganisms in an organized biofilm making them difficult accessible for antibiotics. This biofilm consists of a complex community of microorganisms embedded in an extracellular matrix that forms on surfaces such as an implant. Non-contact induction heating uses pulsed electromagnetic fields to induce so-called ‘eddy currents’ within metal objects which causes them to heat up. This heat causes thermal damage to the bacterial biofilm hence killing the bacteria on the metal implant. The purpose of this study is to determine the effectiveness of induction heating on killing Staphylococcus epidermidis in a biofilm. S. epidermidis biofilms were grown on Titanium alloy (Ti6Al4V) coupons and subsequently were heated with a custom-built induction heater to temperatures of 60°C, 70°C, 80°C and 90°C for 3.5 minutes. Temperature was controlled with an infra-red thermal sensor and micro-controller. We also included two control conditions without induction heating: C1 without induction heating and C2 with chlorhexidine 0.5% in 70% alcohol without induction heating. Experiments were repeated 5 times. In the C1 group (no induction heating), 1.3 * 10(7) colony forming units (CFU)/cm(−2) of S. epidermidis were observed. For 60°C, 70C, 80 C and 90C, a 3.9-log reduction, 5.3-log reduction, 5.5-log reduction and 6.1-log reduction in CFU/cm(−2) were observed, respectively. For the C2 (chlorhexidine) there was a 6.7-log reduction CFU/cm(-2). We concluded that induction heating of Titanium coupons is effective in reducing bacterial load in vitro for S. epidermidis biofilms


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 32 - 32
1 Mar 2021
Graziani G Cappelletti M Ghezzi D Costantini P Fedi S De Carolis M Maltarello M Baldini N
Full Access

Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release. Here, antibacterial nanostructured silver-based thin films are proposed, obtained by a novel plasma-assisted technique, Ionized Jet Deposition (IJD). Coatings are obtained by deposition of metallic silver targets. Films thickness is selected based on previous results aimed at measuring extent and duration of silver release and at evaluating toxicity to host cells (fibroblasts). Here, composition (grazing incidence XRD) and morphology (SEM) of the obtained coatings are characterized for deposition onto different substrates, both metallic and polymeric. For heat sensitive substrates, possible alterations caused by coatings deposition in terms of morphology (SEM) and composition (FT-IR) is assessed. Then, a proof-of-concept study of the capability of these films to inhibit microbial biofilm formation is performed by using two different supports i.e., the Calgary Biofilm Device and the microplates. To the best of the Authors knowledge, this is the first study describing the application of specific anti-biofilm analyses to nanostructured coatings. In particular, anti-biofilm activities are tested against the following pathogenic strains: Escherichia (E.) coli NCTC12923, Staphylococcus (S.) aureus ATCC29213 and S. aureus 86. Among these, the strain 86 is not only pathogen but it also possesses several antibiotic resistance genes, allowing the evaluation of the utilization of nanostructured coatings as an alternative anti-microbial system to face the global threat of antibiotic resistance. Results indicate that films deposited from silver targets are composed of nanosized aggregates of metallic silver, indicating a perfect transfer of composition from the deposition target to the coatings. Results obtained here indicate that the films have significant antibacterial and antibiofilm activity. In addition, they prove that the system can be successfully applied for evaluation of coatings antibacterial efficacy for biomedical applications


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 35 - 35
1 Jul 2014
Gbejuade H Lovering A Hidalgo-Arroyo A Leeming J Webb J
Full Access

Summary Statement. Conventional culture techniques have poor sensitivity for detecting bacteria growing in biofilms, which can result in under-diagnosis of infections. Sonication of biofilm colonised orthopaedic biomaterials can render bacteria in biofilm more culturable, thereby improving diagnosis of orthopaedic implant infections. Introduction. Prosthetic joint infection (PJI) is a potentially devastating complication in arthroplasty. Biofilm formation is central to PJI offering protection to the contained bacteria against host defence system and antimicrobials. Orthopaedic biomaterials generally have a proclivity to biofilm colonisation. Conventional culture technique has a low sensitivity for detecting bacteria in biofilm. Sonication can disrupt bacteria biofilms aggregations and dislodge them from colonised surfaces, rendering them culturable and consequently improve the diagnosis of otherwise culture-negative PJI. We investigated the effect of ultrasonication on biofilms adherent to poylmethylmethacrylate PMMA cement. Method. Identical PMMA cement beads were aseptically prepared using 7mm bead templates. Each sample comprised of two beads and with multiple replicates made for each sample. Two proficient biofilm forming strains of Staphylococcus epidermidis (5179-R1 and 1457) were used for the experiments. Each set of cement sample was immersed in Brain Heart Infusion broth inoculated with a pre-culture of the chosen bacteria strains (final concentration approximately 4 × 10. 6. CFU/ml). All samples were then incubated for 24 hours at 37°C to allow for biofilm growth and colonisation of the cement surfaces, as well as for biofilm maturity. After incubation, each sample was washed twice with sterile phosphate buffer saline (PBS) to remove non-adherent and loosely adherent bacteria. The cement beads were transferred to a fresh sterile bottle at each stage of the experiment, while ensuring the maintenance of asepsis. After the final wash, 10ml of sterile PBS was added to the cement beads and each sample was sonicated for varying periods: 0min, 5min, 10min, 20min and 40min. Sonicate fluid were collected after each period of sonication, with which culture plates were inoculated for the purpose of viable bacteria counting. Results. The optimum sonication period was between 5min and10 min. The mean pre-sonication CFU/ml were 4.7 × 10. 5. and 8.3 × 10. 5. for bacteria strains 5179-R1 and 1457 respectively, while the mean CFU/ml after 10min of sonication were 1.4 × 10. 7. and 0.74 × 10. 7. for bacteria strains the respective bacteria strains. Discussion / Conclusion. Our study showed a significant increase (almost 100 fold) in bacteria culture yield following sonication. We were also able to demonstrate that the optimum duration for sonication (using comparable sonicators) was approximately 10min. Sonication was able to completely remove adherent bacteria from the surfaces of our cement samples allowing them to be cultured. Our result suggests that sonication of bone cement can be instrumental in improving the diagnosis of biofilm associated PJI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 3 - 3
1 May 2017
Aguilar-Colomer A Doadrio J Manzano M Esteban J Vallet-Regí M Pérez-Jorge C
Full Access

Background. Staphylococcus aureus is a human pathogen involved in implant-related infections. In these diseases, biofilm production is the key pathogenic event, and it increases antibiotic resistance of the organism. Because this phenomenon, local delivery of antibiotics could allows reaching high concentrations in the infected tissue without the secondary effects linked to systemic administration. Here we report the use of a ceramic biomaterial (SBA-15) as a carrier of antibiotics in order to deliver them directly in the infected tissue. Material and methods. SBA-15 discs were loaded with vancomycin, rifampin and a combination of both according to the protocol described by Molina-Manso et al. Loaded discs were introduced in a 0.5 McFarland suspension of S. aureus 15981 and incubated during 6 and 24 hours in order to develop a biofilm. After incubation, samples were sonicated during 5 minutes and 1:10 serial dilutions were performed in order to count viable bacteria. All experiments were performed in triplicate. Results. A statistically significant decrease in the number of viable bacteria was detected for all antibiotics at 6 hours, and also for vancomycin and the combination. Rifampin showed an increase in the number of viable bacteria at 24 hours. No differences were detected between vancomycin and the combination of antibiotics. Conclusion. SBA-15 can carry antibiotics that have effect on bacterial biofilm. The use of rifampin alone showed a loss of the effect after 24 hours of incubation, probably due to the selection of resistant mutants that nullify the effect of the antibiotic. No differences have been detected between vancomycin alone and its combination with rifampin in this experiment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 56 - 56
1 Apr 2018
Nishitani K Ishikawa M de Mesy Bentley K Ito H Matsuda S Daiss J Schwarz E
Full Access

INTRODUCTION. Staphylococci species account for ∼80 % of osteomyelitis cases. While the most severe infections are caused by Staphylococcus aureus (S. aureus), the clinical significance of coagulase negative Staphylococcus epidermidis (S. epidermidis) infections remain controversial. In general, S. epidermidis was known to be a protective commensal bacterium. However, recent studies have shown that intra-operative low-grade S. epidermidis contamination prevents bone healing. Thus, the purpose of this study is to compare the pathogenic features of S. aureus and S. epidermidis in an established murine model of implant-associated osteomyelitis. METHODS. All animal experiments were performed on IACUC approved protocols. USA300LAC (MRSA) and RP62A(S. epidermidis) were used as prototypic bacterial strains. After sterilization, stainless steel pins were implanted into the tibiae of BALB/c mice (n=5 each) with or without Staphylococci. Mice were euthanized on day 14, and the implants were removed for scanning electron microscopy (SEM). Tibiae were fixed for mCT prior to decalcification for histology. RESULTS. The histology of S. aureus infected tibiae demonstrated massive osteolysis and abscesses formation. In contrast, the histology from S. epidermidis infected tibiae was indistinguishable from uninfected controls. Gross mCT analyses revealed massive bone defects around the infected implant with reactive bone formation only in the S. aureus group. The osteolysis findings were confirmed by quantitative analysis, as the medial hole area of S. aureus infected tibiae (1.67 ± 0.37 mm2) was larger than uninfected (0.15 ± 0.10 mm2) (p < 0.001) and S. epidermidis (0.19 ± 0.14 mm2) (p < 0.001) groups. Consistently, the %biofilm area on the implants of the S. aureus group (39.0 ± 13.7 %) was significantly larger than uninfected (6.3 ± 2.3 %) (p < 0.001) and S. epidermidis (12.9 ± 7.4 %) (p < 0.001). Although the amount of biofilm of S. epidermidis was much smaller than S. aureus, the presence of bacteria on the implant were confirmed by SEM. In addition, the empty lacunae, which is a feature of mature biofilm and evidence of bacterial emigration, were also present on both S. epidermidis and S. aureus infected implants. DISCUSSION. In this study, we confirmed the aggressive pathologic features S. aureus on host bone, soft tissues and biofilm formation. In contrast, we show that S. epidermidis is incapable of inducing osteolysis, reactive bone formation or soft tissue abscesses, even though it colonizes the implant in small biofilms. Collectively, the results support a potential role for S. epidermidis in implant loosening and fracture non-unions, as the bacteria can form small biofilms that could interfere with osseous integration and bone healing. However, future studies are warranted to assess the effects of S. epidermidis biofilm on implant loosening


Full Access

Infected wounds are a major problem for patients and health care systems. The inflammation triggers expression of high levels of extracellular protease activities which degrade newly formed granulation tissue. The expression of host-derived proteases had been studied in wound healing extensively. In contrast, the contribution of bacterial proteases in impaired healing acute and chronic wounds is poorly understood as is how bacterial proteases can be blocked. In this study the expression of P. aeruginosa proteases was studied. P. aeruginosa is associated with poor healing and sufficiently common in wound infections to merit closer study. We used in vitro biofilm and planktonic culture models to analyze the culture-dependent expression of different P. aeruginosa proteases and how protease modulating polymers can inhibit activities. P. aeruginosa (PAO1, DSM 22644) was grown in LB. o. medium (aerated planktonic cultures) or in a biofilm culture model (dialysis tubing on LB. o. plates). The supernatant of planktonic or wash fluids from biofilm cultures were analyzed for protease activity. Global extracellular protease activities increased in a time- and culture condition-dependent manner (for planktonic cultures 180 ng/ml trypsin equivalent 8h, 330 ng/ml 24h, 490 ng/ml 48h; biofilm cultures 190 ng/ml trypsin equivalent 8h, 420 ng/ml 24h, 170 ng/ml 48h). Enzyme zymography revealed in biofilm cultures predominant bands at 50 kD (8h, 24h, 48h), 90 kD (24h) and > 200 kD (8h, 24h, 48h). In planktonic cultures the pattern was different 50 kD (8h), 90 kD (8h, 24h, 48h), 130 kD (24h, 48h) and > 200 kD (8h, 24h). Two different polyacrylate superabsorbers could inhibit P. aeruginosa protease activities. Favor PAC 300 blocked protease activity by 60% and SXM 9170 by 35%. These data demonstrate complex, culture-dependent expression of extracellular proteases in P. aeruginosa, a microorganism associated with poor wound healing outcomes. From a therapeutic perspective polyacrylate superabsorbers strongly inhibited global protease activities. In the next steps the protease expression pattern needs to be analyzed in P. aeruginosa wounds and correlated with healing progression


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 283 - 283
1 Jul 2014
Post V Wahl P Uckay I Zimmerli W Corvec S Loiez C Ochsner P Moriarty F
Full Access

Summary. Staphylococcus aureus isolates from Fracture fixation device related infections contained fewer isolates that form a strong biofilm in comparison with isolates from Prosthetic joint infections. Both orthopaedic implant related infection groups possessed fnbB and sdrE more frequently than the non-implant related infection groups. Introduction. One of the most common pathogen causing musculoskeletal infections is Staphylococcus aureus. The aim was to characterise S. aureus isolated from these infections and to look for differences between the isolates from orthopaedic implant related infections (OIRI) and those in non-implant related infections (NIRI). The OIRI are further differentiated in those associated with fracture fixation (FFI) devices and those found in prosthetic joint infections (PJI). Methods. Three-hundred and five S. aureus isolates were collected from different Swiss and French hospitals (FFI, n=112; PJI, n=105; NIRI, n=88). The cases of NIRI were composed of 27 osteomyelitis (OM), 23 diabetic foot infections (DFI), 27 soft tissue infections (STI) and 11 postoperative spinal infections (SI). Isolates were tested for their ability to form a biofilm. They were typed by agr (accessory gene regulator) group and genes coding for the 13 most relevant MSCRAMMs, Panton-Valentine leukocidin (PVL), PIA (polysaccharide intercellular adhesin), γ-haemolysin, the five most relevant Staphylococcal enterotoxins (SEA-SEE), exfoliative toxins A and B (ETA and ETB) and toxic shock protein (TST) were screened for by PCR. Results. The majority of the S. aureus isolates were methicillin susceptible (MSSA) with 83.4% for the OIRI and 93.2% for the NIRI. All isolates were able to produce a biofilm. A strong biofilm was produced in 13.8% of the OIRI isolates compared to 10.2% of the NIRI isolates. The difference between the isolates of the PJI versus the FFI was statistically significant (20% vs 8%; p=0.011). All four agr types were present in all groups. agrI predominated in the OIRI (42.4%) as well as in the NIRI (44.4%). Comparing OIRI with NIRI, agrII was present in a higher prevalence in OIRI (30.9% vs 14.8%) and agrIII in a lower incidence (21.2% vs 30.7%). Genes cna, clfA and bbp were exhibited predominantly by isolates from the NIRI, while the fnbB and the sdrE gene were more frequently observed among OIRI. Conclusions. Methicillin susceptible S. aureus (MSSA) was more prevalent than methicillin resistant S. aureus (MRSA) in this collection. Possible trends for the orthopaedic device associated infection groups FFI and PJI could be observed whereby isolates from PJI produced stronger biofilm than isolates from the FFI group. The agr type agrII, the fnbB gene and sdrE gene were more prevalent present in the OIRI compared to the NIRI. In contrast, agrIII, and the bbp gene were more prevalent in the NIRI than in the OIRI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs. We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 66 - 66
11 Apr 2023
Sebastian S Collin M Liu Y Raina D Tägil M Lidgren L
Full Access

There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for Staphylococcus aureus deep bone infections (DBIs). RIF is also associated with systemic side effects, and known for causing rapid development of antibiotic resistance when given as monotherapy. We evaluated a clinically usedbi-phasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). It was hypothesized that this combined approach could provide improved biofilm eradication and prevent the development of RIF resistance. Methods: 1) Biofilm eradication: Using a modified crystal violet staining biofilm quantification method, the antibiotics released at different time points (Day 1, 3, 7, 14, 21, 28 and 35) from the hemispherical pellets of CaS/HA(500 mg)-VAN (24.57 mg) / GEN (10.35 mg) composites with or without RIF (8.11 mg) were tested for their ability to disrupt the preformed 48-h old biofilms of S. aureus ATCC 25923, and S. aureus clinical strain P-3 in 96-well microtitre plate. For each tested group of antibiotic fractions, five separate wells were used (n=5). 2) Testing for resistance development: Similar to the method mentioned above the 48-h biofilm embeded bacteria exposed to antibiotic fractions from different time points continuously for 7 days. The biofilms remained were then tested for RIF resistant strains of bacteria. Overall, there was clear antibiofilm biofilm activity observed with CaS/HA-VAN/GEN+RIF combinations compared with CaS/HA-VAN/GEN alone. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with combinations of CaS/HA-VAN/GEN+RIF. Enhanced antibiofilm effects without development of RIF resistance indicates that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for additional local delivery in clinically demanding DBIs. Acknowledgement: We deeply acknowledge the Royal Fysiographic Society of Lund, Landshövding Per Westlings Minnesfond and the Stina and Gunnar Wiberg fond for financial support


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 106 - 106
11 Apr 2023
McIff T Funk G Horn E Hageman K Varner A Kilway K
Full Access

We developed a novel silorane-based biomaterial (SBB) for use as an orthopedic cement. SBB is comprised of non-toxic silicon-based monomers, undergoes non-exothermic polymerization, and has weight-bearing strength required of orthopedic cements. We sought to compare the antibiotic release kinetics of this new cement to that of commercially available PMMA bone cement. We also evaluated each material's inherent propensity to support the attachment of bacteria under both static and dynamic conditions. One gram of either rifampin or vancomycin was added to 40g batches of PMMA and SBB. Pellets were individually soaked in PBS. Eluate was collected and tested daily for 14 days using HPLC. Compressive strength and modulus were tested over 21 days. Bioassays were used to confirm the bioactivity of the antibiotics eluted. We measured the growth and maturation of staphylococcus aureus (SA) biofilm on the surface of both PMMA and SBB disks over the course of 72 hours in a static well plate and in a dynamic biofilm reactor (CDC Biofilm Reactor). N=4 at 24, 48, and 72 hours. A luminescent strain of SA (Xen 29) was employed allowing imaging of bacteria on the discs. SBB eluted higher concentrations of vancomycin than did PMMA over the course of 14 days (p<0.001). A significant 55.1% greater day 1 elution was observed from SBB. Silorane cement was able to deliver rifampin in clinically favorable concentrations over 14 days. On the contrary, PMMA was unable to deliver rifampin past day 1. The incorporation of rifampin into PMMA severely reduced its mechanical strength (p<0.001) and modulus (p<0.001). Surface bacterial radiance of PMMA specimens was significantly greater than that of SBB specimens at all time points (p<0.05). The novel silorane-based cement demonstrated superior antibiotic release and, even without antibiotic incorporation, demonstrated an innate inhabitation to bacterial attachment and biofilm


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 101 - 101
1 Nov 2021
Dubus M Varin-Simon J Papa S Gangloff S Mauprivez C Ohl X Reffuveille F Kerdjoudj H
Full Access

Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Materials and Methods. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from orthopaedic implant-associated infection (Ci). The infective capabilities of both strains was determined following gentamicin-based antibiotic protection assay. The morphology and ultrastructural analysis of infected MSCs was performed respectively through CLSM pictures of Phalloidin. ®. stained MSCs cytoskeleton and DAPI labelled Cb, and transmission and scanning electron microscopies. The virulence of intracellular Ci and Cb (Ci-MSCs and Cb-MSCs) was investigated by biofilm formation on non-living bone materials; and the immunomodulatory response of infected MSCs was investigated (PGE-2 and IDO secretion detected by ELISA). Bone cells (osteoblasts and PMA differentiated macrophages) were then challenged with Cb-MSCs and Ci-MSCs. Intracellular accumulation of ROS within infected macrophages was assessed by flow cytometry after 2 h of infection and the catalase production by Cb-MSC and Ci-MSC was evaluated. Statistical analyses were performed using Mann & Whitney test. Results. Following MSCs infection by C. acnes, the rate of viable bacteria inside MSCs was about 4% and 6% for Cb and Ci, respectively. Cb showed however a lower invasiveness in comparison to Ci (0.6-fold, p=0.01), confirming the higher pathogenicity of Ci. The ultrastructural and morphology analysis of infected MSCs confirmed the presence of bacteria free in MSCs cytoplasm, localized between F-actin fibers of MSCs, which preserved their elongated morphology. Considering the high level of secreted immunomodulatory mediators (PGE-2 and IDO), our results suggest that Cb-infected MSCs could promote a transition of macrophages from a primarily pro-inflammatory M1 to a more anti-inflammatory M2 phenotype. In comparison with Cb, Cb-MSCs increased significantly the formation of biofilm on TA6V and PEEK but reduced the biofilm formation on 316L SS. Ci-MSCs showed a significant increase in biofilm formation on PEEK vs Ci, while no difference in biofilm formation was noticed on TA6V and 316L SS. Regarding the ability of MSCs bacteria to infect osteoblasts, our results showed a higher infective capabilities of Cb-MSCs versus Cb (>2-fold, p=0.02), while no difference was noticed between Ci and Ci-MSCs. Along with an increase in catalase production by Cb-MSCs, we noticed its higher persistence to macrophage degradation. Conclusions. Taken together, our results demonstrate a shift in commensal Cb to pathogenic following infection. Indeed, Cb- MSCs acquires features that (i) increase biofilm formation on orthopedic based materials, (ii) increase the osteoblast infection and (iii) develop resistance to the macrophage degradation, through the increase of catalase production. Overall, these results showed a direct impact of C. acnes on bone marrow derived MSCs, providing new insights into the development of C. acnes during implant-associated infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 36 - 36
11 Apr 2023
Boyce S Le Maitre C Smith T Nichol T
Full Access

An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on osteogenesis were studied by culturing mesenchymal stem cells in the presence of media in which sol-gel samples had been immersed. Antimicrobial-loaded coatings showed strong activity against a wide range of clinically relevant bacterial and fungal pathogens with no loss of activity from antibiotic alone. The sol-gel coating demonstrated controlled release of antimicrobials and initial sol-gel coatings showed no loss of viability on MSCs with gentamicin containing coatings. Current work is underway investigating cytotoxicity of sol-gel compositions against MG-63 cells and primary osteoblasts. This research forms part of an extended study into a promising antimicrobial delivery strategy to prevent PJI. The implant coating has potential to advance PJI infection prevention, reducing future burden upon healthcare costs and patient wellbeing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 18 - 18
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 14 - 14
1 Mar 2021
Tsang J Gallagher M Simpson H
Full Access

Abstract. OBJECTIVES. Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms. METHODS. Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry. RESULTS. Non-lethal dispersion of biofilm-associated S. aureus was associated with a four-fold reduction in gentamicin tolerance and a 25% increase in cellular respiration of both dispersed and adherent cells. Metabolome analysis found non-lethal dispersion reduced intracellular levels of L-ornithine and L-proline, with increased levels of cyclic nucleotides (p<0.05) in both liberated cells and the remaining biofilm-associated bacteria. These metabolomic changes have previously been shown to be associated with inactivation of the carbon catabolite repression mechanism, which is a key regulatory gatekeeper in the cellular resuscitation of dormant S. aureus cells. CONCLUSION. The metabolomic pipeline described in this study presents a valuable tool in the elucidation of molecular mechanistic pathways in biofilm pathogenesis. Kreb's cycle reactivation, through the carbon catabolite repression regulatory mechanism, has been shown to be associated with the reversal of biofilm-associated gentamicin tolerance. Understanding of the biosynthetic changes associated with the biofilm state will assist in the discovery of novel therapeutic targets in the management of biomaterial-related infections. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 15 - 15
1 Dec 2022
Graziani G Ghezzi D Sartori M Fini M Perut F Montesissa M Boi M Cappelletti M Sassoni E Di Pompo G Giusto E Avnet S Monopoli D Baldini N
Full Access

Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice. Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro. Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates. Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation. Biocompatibility is tested in vitro on fibroblasts and MSCs and, in vivo on rat models. Efficacy is also tested in an in vivo rabbit model, using a multidrug resistant strain of S. aureus (MRSA, S. aureus USA 300). Absence of nanotoxicity is assessed in vivo by measuring possible presence of Ag in the blood or in target organs (ICP-MS). Then, possible antitumor effect of the films is preliminary assessed in vitro using MDA-MB-231 cells, live/dead assay and scanning electron microscopy (FEG-SEM). Statistical analysis is performed and data are reported as Mean ± standard Deviation at a significance level of p <0.05. Silver and silver-bone apatite films show high efficacy in vitro against all the tested strains (complete inhibition of planktonic growth, reduction of biofilm formation > 50%), without causing cytotoxicity. Biocompatibility is also confirmed in vivo. In vivo, Ag and Ag-bone apatite films can inhibit the MRSA strain (>99% and >86% reduction against ctr, respectively). Residual antibacterial activity is retained after explant (at 1 month). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 17 - 17
2 Jan 2024
Wildemann B
Full Access

The Global Burden of Disease Study 2019 showed a 33.4% increase in fractures and a 65.3% increase in Years lived with disability (YLD) since 1990. Although the overall rate of fracture related infection (FRI) is low, it increases to 30% in complex fractures. In addition, the implantation of foreign materials, such as fracture stabilizing implants, decreases the number of bacteria needed to cause an infection. Then, when infections do occur, they are difficult to treat and often require multiple surgeries to heal. The bacteria can persist in the canaliculi of the bony tissue, in cells, in a biofilm on material or necrotic bone or in abscess communities. In the last decades, different approaches have been pursued to modify biomaterials as well as implant surface and to develop antimicrobial surfaces or local drug release strategies. This talk will give an introduction to the problem of bony and implant associated infections and presents the development and preclinical (as well as clinical) studies of two approaches for local drug delivery