header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



8th Combined Meeting Of Orthopaedic Research Societies (CORS)


Summary Statement

A study to evaluate biofilm development on different coatings of UHMWPE was performed. We observed a species-specific effect, with S. aureus affected mainly by DLC-F and S. epidermidis by DLC. These data correlates with previous adherence studies.


Prosthetic joint infection is intimately related to bacterial biofilms on implant biomaterials. Recently, diamond-like carbon (DLC) coating has been suggested to improve the antibacterial performance of medical grade GUR1050 ultra high molecular weight polyethylene (UHMWPE) supplied by Orthoplastics bacup, UK versus collection and clinical staphylococcal strains. The aim of this study was to make an approximation towards the actual impact of such coatings in biofilm formation.

Material and Methods

Biofilm formation by two collection laboratory strains (S. aureus 15981[4] and S. epidermidis ATCC 35984) was evaluated with raw UHMWPE and two UHMWPEs coated with DLC, and fluorine doped DLC (F-DLC). The coated surfaces were obtained by plasma enhanced chemical vapour deposition, as previously described. All the sterilised surfaces were exposed to ≈108 colony forming units/mL during 48 hours at 35° C, with total medium exchange at 24 hours without shaking. Surfaces were carefully washed with PBS (X 3) and then stained with Backlight© live/dead stain for 15 minutes. Confocal Laser Scanning Microscopy was used for sampling the surfaces and studying biofilm, for which eight random series of photographs (Named SERIES) and four predefined biofilm series (Named BIOFILM) were taken. Biofilm thickness (microns) and covered surface by live/dead bacteria (%) were determined for both SERIES and BIOFILM. Assays were made in triplicates. Photographs were analyzed by ImageJ software, and data, by a Mann-Withney test.


Biofilm thickness and bacterial coverage per surface type in SERIES as well as BIOFILM for S. aureus and S.epidermidis, respectively is shown. A diminution of these two variables was observed in the coated surfaces versus raw UHWMPE with statistically significant reductions (p≤0.0001). F-DLC was the most effective coated surface versus S. aureus, with the least biofilm thickness and the highest proportional percentage of dead bacteria, and so DLC was versus S. epidermidis. Of interest, the proportion of dead S. epidermidis was higher in raw UHMWPE.

Discussion & Conclusions

Staphylococcal biofilm formation on UHMWPE surfaces is irregular. Both biofilm thicknesses as bacterial coverage were lower in DLC and F-DLC. These preliminary data correlate to our previous bacterial adherence findings and support the better anti-adherence performance of DLC coated UHMWPEs. Fluorine is suggested to exhibit a bacteria-dependant behavior, but at present its role is quite far to be known. Further studies using clinical strains of both species are needed to evaluate the accuracy of these results.