Abstract
Background
Staphylococcus aureus is a human pathogen involved in implant-related infections. In these diseases, biofilm production is the key pathogenic event, and it increases antibiotic resistance of the organism. Because this phenomenon, local delivery of antibiotics could allows reaching high concentrations in the infected tissue without the secondary effects linked to systemic administration. Here we report the use of a ceramic biomaterial (SBA-15) as a carrier of antibiotics in order to deliver them directly in the infected tissue.
Material and methods
SBA-15 discs were loaded with vancomycin, rifampin and a combination of both according to the protocol described by Molina-Manso et al. Loaded discs were introduced in a 0.5 McFarland suspension of S. aureus 15981 and incubated during 6 and 24 hours in order to develop a biofilm. After incubation, samples were sonicated during 5 minutes and 1:10 serial dilutions were performed in order to count viable bacteria. All experiments were performed in triplicate.
Results
A statistically significant decrease in the number of viable bacteria was detected for all antibiotics at 6 hours, and also for vancomycin and the combination. Rifampin showed an increase in the number of viable bacteria at 24 hours. No differences were detected between vancomycin and the combination of antibiotics.
Conclusion
SBA-15 can carry antibiotics that have effect on bacterial biofilm. The use of rifampin alone showed a loss of the effect after 24 hours of incubation, probably due to the selection of resistant mutants that nullify the effect of the antibiotic. No differences have been detected between vancomycin alone and its combination with rifampin in this experiment.