Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 26 - 26
1 Dec 2020
Schotanus M Grammatopoulos G Meermans G
Full Access

Introduction. Acetabular component orientation is an important determinant of outcome following total hip arthroplasty (THA). Although surgeons aim to achieve optimal cup orientation, many studies demonstrate their inability to consistently achieve this. Factors that contribute are pelvic orientation and the surgeon's ability to correctly orient the cup at implantation. The goal of this study was to determine the accuracy with which surgeons can achieve cup orientation angles. Methods. In this in vitro study using a calibrated left and right sawbone hemipelvis model, participants (n=10) were asked to place a cup mounted on its introducer giving different targets. Measurements of cup orientation were made using a stereophotogrammetry protocol to measure radiographic inclination and operative anteversion (OA). A digital inclinometer was used to measure the intra-operative inclination (IOI) which is the angle of the cup introducer relative to the floor. First, the participant stated his or her preferred IOI and OA and positioned the cup accordingly. Second, the participant had to position the cup parallel to the anteversion of the transverse acetabular ligament (TAL). Third, the participant had to position the cup at IOI angles of 35°, 40° and 45°. Fourth, the participant used the mechanical alignment guide (45° of IOI and 30° of OA) to orient the cup. Each task was analysed separately and subgroup analysis included left versus right side and hip surgeons versus non-hip surgeons. Results. For the first task, hip surgeons preferred smaller IOI and larger OA than non-hip surgeons, but there was no significant difference in accuracy between both groups. When aiming for TAL, both surgeon groups performed similar, but accuracy on the non-dominant side was significantly better compared with the dominant side (mean deviation 0.6° SD 2.4 versus −2.6° SD 2.3) (p=0.004). When aiming for a specific IOI target of 35°, 40° or 45°, non-hip surgeons outperformed hip surgeons (mean deviation form target IOI 1.9° SD 2.7 versus −3.1° SD 3.8) (p<0.0001) with less variance (p=0.03). Contrary to version, accuracy on the dominant side was significantly better compared with the non-dominant side (mean deviation −0.4° SD 3.4 versus −2.1° SD 4.8). When using a mechanical guide, surgeons performed similar (0.6° SD 1.2 versus −0.4° SD 2.1 for inclination p=0.11 and −0.5° SD 2.6 versus −1.8° SD 3.3 for version p=0.22) and these values did not differ significantly from the actual IOI and OA of the mechanical guide. When using a mechanical guide, there was no difference in accuracy between the dominant and non-dominant side. Conclusion. There was no difference in accuracy between hip surgeons and non-hip surgeons when they aimed for their preferred IOI and OA or used a mechanical guide. When aiming for a specific IOI target, non-hip surgeons outperformed hip surgeons. Hip surgeons overestimate IOI and underestimate OA, presumably because this helps to achieve the desired radiographic cup orientation. Regarding accuracy, the non-dominant side was better for version and the dominant side for inclination. When aiming for a specific IOI and OA target, using a mechanical guide is significantly better than freehand cup orientation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 25 - 25
11 Apr 2023
Richter J Ciric D Kalchschmidt K D'Aurelio C Pommer A Dauwe J Gueorguiev B
Full Access

Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique. A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were biomechanically tested until failure under progressively increasing cyclic loading at 2Hz, starting at 50N peak compression, increasing 0.05N/cycle. Stiffness was calculated from machine data. Acetabular anteversion, inclination and medialization were evaluated from motion tracking data from 250-2500 at 250 cycle increments. Failure cycles and load were evaluated for 5° change in anteversion. Stiffness was higher in G1 (56.46±19.45N/mm) versus G2 (39.02±10.93N/mm) but not significantly, p=0.31. Acetabular fragment anteversion, inclination and medialization increased significantly each group (p≤0.02) and remained non-significantly different between the groups (p≥0.69). Cycles to failure and failure load were not significantly different between G1 (4406±882, 270.30±44.10N) and G2 (5059±682, 302.95±34.10N), p=0.78. From a biomechanical perspective, the present study demonstrates that a bi-directional screw orientation does not necessarily advantageous versus mono-axial alignment when the latter has all three screws evenly distributed over the osteotomy geometry. Moreover, the 3PIO fixation is susceptible to changes in anteversion, inclination and medialization of the acetabular fragment until the bone is healed. Therefore, cautious rehabilitation with partial weight-bearing is recommended


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 52 - 52
4 Apr 2023
García-Rey E Saldaña L
Full Access

Pelvic tilt can vary over time due to aging and the possible appearance of sagittal spine disorders. Cup position in total hip arthroplasty (THA) can be influenced due to these changes. We assessed the evolution of pelvic tilt and cup position after THA and the possible appearance of complications for a minimum follow-up of ten years. 343 patients received a THA between 2006 and 2009. All were diagnosed with primary osteoarthritis and their mean age was 63.3 years (range, 56 to 80). 168 were women and 175 men. 250 had no significant lumbar pathology, 76 had significant lumbar pathology and 16 had lumbar fusion. Radiological analysis included sacro-femoral-pubic (SFP), acetabular abduction (AA) and anteversion cup (AV) angles. Measurements were done pre-operatively and at 6 weeks, and at five and ten years post-operatively. Three measurements were recorded and the mean obtained at all intervals. All radiographs were evaluated by the same author, who was not involved in the surgery. There were nine dislocations: six were solved with closed reduction, and three required cup revision. All the mean angles changed over time; the SFP angle from 59.2º to 60º (p=0.249), the AA angle from 44.5º to 46.8º (p=0.218), and the AV angle from 14.7º to 16.2º (p=0.002). The SFP angle was lower in older patients at all intervals (p<0.001). The SFP angle changed from 63.8 to 60.4º in women and from 59.4º to 59.3º in men, from 58.6º to 59.6º (p=0.012). The SFP angle changed from 62.7º to 60.9º in patients without lumbar pathology, from 58.6º to 57.4º in patients with lumbar pathology, and from 57.0º to 56.4º in patients with a lumbar fusion (p=0.919). The SFP cup angle was higher in patients without lumbar pathology than in the other groups (p<0.001), however, it changed more than in patients with lumbar pathology or fusion at ten years after THA (p=0.04). Posterior pelvic tilt changed with aging, influencing the cup position in patients after a THA. Changes due to lumbar pathology could influence the appearance of complications long-term


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 49 - 49
1 Apr 2018
Morgan R Logishetty K Western L Cobb J Auvinet E
Full Access

Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings. Acetabular cup malposition within total hip arthroplasty (THA) can lead to increased dislocation rates, impingement and increased wear as a result of edge loading. We have developed a THA simulator incorporating a foam/Sawbone pelvis model with a modified Microsoft HoloLens® augmented reality (AR) headset. We aimed to measure the trueness, precision, reliability and reproducibility of this platform for translating spatial measurements of acetabular cup orientation to angular values before developing it as a training tool. Methods. A MicronTracker® stereoscopic camera was integrated onto a HoloLens® AR system. Trueness and precision values were obtained through comparison of the AR system measurements to a gold-standard motion capture system”s (OptiTrack®) measurements for acetabular cup orientation on a benchtop trainer, in six clinically relevant pairs of anteversion and inclination angles. Four surgeons performed these six orientations, and repeated each orientation twice. Pearson”s coefficients and Bland-Altman plots were computed to assess correlation and agreement between the AR and Motion Capture systems. Intraclass correlation coefficients (ICC) were calculated to evaluate the degree of repeatability and reproducibility of the AR system by comparing repeated tasks and between surgeons, respectively. Results. The trueness of the AR system was 0.24° (95% CI limit 0.92°) for inclination and 0.90° (95% CI limit 1.8°) for anteversion. Precision was 0.46° for inclination and 0.91° for anteversion. There was significant correlation between the two methods for both inclination (r = 0.996, p<0.001) and anteversion (r = 0.974, p<0.001). Repeatability for the AR system was 0.995 for inclination and 0.989 for anteversion. Reproducibility for the AR system was 0.999 for inclination and 0.995 for anteversion. Conclusion. Measurements obtained from the enhanced HoloLens® AR system were accurate and precise in regards to determining angular measurements of acetabular cup orientation. They exceeded those of currently used methods of cup angle determination such as CT and computer-assisted navigation. Measurements obtained were also highly repeatable and reproducible, therefore this platform is accurately validated for use in a THA training simulator


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2021
Ramos A Matos M
Full Access

Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of implant stability along bone loss. The process of bone fixation developed present some limitation associated to the bone adhesion in the interface, not considered. Acknowledgement. This work was supported by POCI-01-0145-FEDER-032486,– FCT, by the FEDER, with COMPETE2020 - (POCI), FCT/M


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1401 - 1405
1 Oct 2006
Honl M Schwieger K Salineros M Jacobs J Morlock M Wimmer M

We compared the orientation of the acetabular component obtained by a conventional manual technique with that using five different navigation systems. Three surgeons carried out five implantations of an acetabular component with each navigation system, as well as manually, using an anatomical model. The orientation of the acetabular component, including inclination and anteversion, and its position was determined using a co-ordinate measuring machine. The variation of the orientation of the acetabular component was higher in the conventional group compared with the navigated group. One experienced surgeon took significantly less time for the procedure. However, his placement of the component was no better than that of the less experienced surgeons. Significantly better inclination and anteversion (p < 0.001 for both) were obtained using navigation. These parameters were not significantly different between the surgeons when using the conventional technique (p = 0.966). The use of computer navigation helps a surgeon to orientate the acetabular component with less variation regarding inclination and anteversion


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 147 - 147
1 Jul 2014
Dong N Nevelos J Kreuzer S
Full Access

Summary. From a large 3D Caucasian bone data base, female population had significantly larger acetabular anatomical anteversion angle and combined acetabular-femoral anteversion angle than that of male population. There was no significant difference in femoral neck anteversion angles between the groups. Introduction. Combined Anteversion (CA) angle of acetabular component and femoral neck is an important parameter for a successful Total Hip Arthroplasty (THA). The purpose of this study was to electronically measure the version angles of native acetabulum and femur in matured normal Caucasian population from large 3D CT data base. Our question was if there was any significant difference in CA between male and female population. Methods. 221 anonymous (134 males and 87 females) CT paired pelvic and femoral scans from normal Caucasian population with age range of 30–93 years old were analyzed. CT data was converted to virtual bones using custom CT analytical software. 1. (SOMA. TM. V.3.2). Acetabular Anatomical Anteversion (AA) angle as defined by Murray. 2. was selected. The acetabular rim plane was constructed by selecting 3 bony land marks from pubis, ilium and ischium. The AA was measured against pelvic frontal plane. Femoral neck Anteversion (FA) was measured between neck axis plane and the Coronal plane which was defined by posterior condyles. The neck axis plane was defined as being the plane passing through femoral neck axis and being perpendicular to the transverse plane which is defined by distal femoral condyles. The CA angle in standing position was computed as the summation of AA and FNA angles. All the measurements were performed for total, male and female populations. Student's t tests were performed to compare gender difference with an assumed 95% confidence level. The relationship between AA and FA for each gender was studied by the plot of AA and a function of FA. Results. The mean AA angle for total population was 25.8°, SD=6.52°. (male 24.8°, SD=5.91°, female was 27.3°, SD=7.12°. P=0.006). The mean FA angle for total population was 14.3°, SD=7.95°. (male 13.4°, SD=7.99°, female 15.6°, SD=7.76°. P=0.051). The mean CA angle for total population was 40.1°, SD=10.76°. (male 38.2° SD= 10.38 °, female 42.9° SD= 10.79 °. P=.0002). The plot of AA as a function FA is shown. The frequency distribution of CA angle is plotted for males and females. Discussion/Conclusion. The results showed both AA and CA angles were significantly smaller in the male than that in female. However there was no significant difference in FA between male and female. The plot of AA as a function of FA showed no correlation (R. 2. <.09) between the two angles for both male (R. 2. =.0097) and female (R. 2. =.0029). The FA angle of a femoral stem implant in THA may be smaller than that of natural femur, therefore a higher AA or higher posterior build up may be required for the acetabular component to achieve optimal function of a THA. This may be a more significant issue in female population. The limitations of this study was that this population did not have pathological conditions which could lead to THA. However, it should provide reference guidance comparing normal anatomy between male and female


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 3 - 3
1 Jun 2012
Goudie S Deep K
Full Access

Native anatomy of the arthritic hip is an important consideration in hip replacement surgery and implant design. Acetabular component orientation in total hip replacement (THR) is the single greatest factor that influences dislocation rate. Detailed knowledge regarding orientation of the native acetabulum is therefore essential. Native acetabular orientation in healthy hips is well documented but we could not find any papers detailing native acetabular orientation in the arthritic hip. A commercially available computer navigation system (Orthopilot BBraun Aesculap, Tuttlingen, Germany) was used to assess acetabular inclination and anteversion in 65 hips with symptomatic arthritis requiring THR. Acetabular inclination in all hips was also measured on pre op anteroposterior pelvic radiographs. Patients with DDH were excluded. All patients were Caucasian and had primary osteoarthritis, 29 males and 35 females. Average age 68(SD 8). Mean values as recorded by computer navigation were: inclination 51.4°(SD 7.1); anteversion 11.7°(SD 10.7). As recorded from radiographs mean acetabular inclination was 58.8°(SD 5.7). There was a difference between males and females. Mean navigated inclination: male 50.5°(SD 7.8); female 52.1°(SD 6.7). Mean navigated anteversion: male 8.3°(SD 8.7); female 14.39°(SD 11.6) Mean radiographic inclination: male 57.4°(SD 5.1) and female 59.8°(SD 6). Natural acetabular orientation in arthritic hips falls out with the safe zones defined by Lewinnek. When compared with healthy hips, as described in current literature, the arthritic hip appears to have a smaller angle of inclination and anteversion, by approximately 5° and 10° respectively, in both males and females. This is useful when positioning the cup during surgery. The difference between males and females, particularly in terms of anteversion, should also be considered


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 53 - 53
1 Jul 2014
Wada H Mishima H Hyodo K Yamazaki M
Full Access

Summary Statement. We used three-dimensional software to assess different anatomic variables in the femur. The canal of Femur twisted slightly below the lesser trochanter in cases with a larger angle of anteversion. Introduction. Accurate positioning of the joint prosthesis is essential for successful total hip arthroplasty (THA). To aid in tailoring of the prosthesis, we used three-dimensional software to assess different anatomic variables in the femur. Patients & Methods. We used CT imaging data of the unaffected normal side of the 25 patients (22 females, age range 30 to 81 years) who underwent THA in 2012 in our hospital. The femur was reconstructed from CT data and measured using three-dimensional modeling software (Mimics 16.0 Materialise, Leuven, Belgium). We measured ellipse fitting to the medullary canal in the axial plane of the femur at 20-mm intervals. The angle between the major axis of those ellipses and the axis of the femoral neck was measured and expressed as the canal rotation. The distance between the lesser trochanter and the center of the femoral head was measured along the Z axis. Results. The major axes of the ellipses direct to medial, front and medial side in the level of epiphysis, above isthmus and distal portion respectively in all cases. The maximum rotated level was above isthmus. The rotation angle in the proximal portion ranged from 36 to 84 degrees (mean, 60.6 degrees, SD ± 12.1). The rotation angle of the distal portion ranged from 71 to 95 degrees (mean, 86.1 degrees, SD ± 6.1). Discussion/Conclusion. The torsion of the canal varied more widely between individuals in the proximal portion than did the distal portion. In addition, the torsion of the proximal aspect, although more variable, was on average smaller when the angle of anteversion was large. Because the canal twisted slightly below the lesser trochanter in cases with a larger angle of anteversion, it is suggested that attention to the degree of anteversion of a flat prosthesis stem is warranted


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction. In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOI. target. ). The intra-operative inclination of the cup (IOI. cup. ) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OI. math. ) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ. Results. The mean RI was 37.9° SD 4.7, there were 12 cases with RI outside the 30°– 45° zone (6%) and 53 outliers (26.5%) with RI outside the 35°-45° zone. The mean absolute ΔIOI. cup. -IOI. target. was 1.2° SD 1.0. The absolute ΔIOI. cup. -IOI. target. was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%), less than 3° in 186 patients (93%), and in 14 patients (7%) the difference was 3°-5°. The mean pelvic motion (ΔOI. math. -IOI. cup. ) was 8.8° SD 3.9 (95% CI 8.2° to 9.3°). The absolute deviation from the mean ΔOI. math. -IOI. cup. , which corresponds with the amount of pelvic motion, was significantly higher in RI outliers compared with non-outliers for both the 30°-45° and 35°-45° inclination zone (7.4° SD 3.3 vs 2.8° SD 2.1 and 4.7° SD 2.8 vs 2.5° SD 2.0 respectively) (p<0.0001). A linear regression analysis demonstrated a strong correlation between ΔOI. math. -IOI. cup. and the RI of the cup (r. 2. =0.70; P<0.0001). A multiple regression was run to predict ΔOI. math. -IOI. cup. from gender, BMI, side and hip circumference. These variables statistically significantly predicted ΔOI. math. -OIa. cup. , F(4, 195) = 19,435, p<0.0001, R2 = 0.285, but only side (p=0.04) and hip circumference (p<0.0001) added statistically significantly to the prediction. Discussion and Conclusion. When using a digital inclinometer 94% of cups had a RI within a 30°-45° zone and 73.5% of cups within a 35°-45° zone using a predefined IOI. target. based on the patient's hip circumference. The difference between the IOI. target. and the IOI. cup. of the acetabular component was less than 3° in 93% and less than 5° in all patients signifying that the surgeons were able to implant the cup close to their chosen intra-operative orientation. Deviation from the mean ΔOI. math. -IOI. cup. was significantly bigger in the RI outliers indicating that RI outliers were caused by more or less than deviation of the sagittal plane of the pelvis at time of cup impaction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 140 - 140
1 Jul 2014
Hjorth M Søballe K Jakobsen S Lorenzen N Mechlenburg I Stilling M
Full Access

Summary. Five year migration results of 49 large-head metal-metal (MoM) total hip arthroplasties show good implant stability and no association between implant migration and metal-ions levels, stem and cup position, or femoral bone mineral density. Introduction. The failure mechanism of metal-metal (MoM) total hip arthroplasty has been related to metal wear-debris and pseudotumor, but it is unknown whether implant fixation is affected by metal wear-debris. Patients and Methods. In July-August 2012 41 patients (10 women) at a mean age of 47 (23–63) years with a total of 49 MoM hip arthroplasties (ReCap Shell/M2a-Magnum head/Bi-Metric stem; Biomet Inc.) participated in a 5–7 year follow-up with blood tests (chrome and cobalt serum ions), questionnaires (Oxford Hip Score (OHS) and Harris Hip Score (HHS), measurement of cup and stem position and periprosthetic BMD. Further the patients had been followed with stereo-radiographs post-operative and at 1, 2 and 5 years for analysis of implant migration (Model-Based RSA 3.32). Results. 4 patients (6 hips) had elevated metal-ion levels (>7ug/l). The mean cup inclination was 45°(sd 6), the mean cup anteversion was 17°(sd7), and the mean stem anteversion was 19°(sd7). The difference between genders was statistically insignificant (p>0.09). At 5 years follow-up total translation (TT) for the stems (n=39 hips) was a mean 0.79mm (sd 0.53) and total rotation (TR) was a mean 1.99° (sd 1.53). Between 1–2 years there was no significant difference in mean TT (p=0.49)for the stems and between 2–5 years TT was mean 0.13 mm (sd 0.35) which was significant (p=0.03) but clinically very small and within the precision limits of the method. We found no significant migration along the 3 separate axes. There was no significant association between stem migration and metal ion levels >7ug/l (p=0.55), female gender (p=0.86), stem anteversion > 25° (p=0.29), T-scores < −1 (p=0.23), total OHS < 40 (p=0.19) or total HHS < 90 (p=0.68). Between 1–5 years there was no significant change in neither subsidence (p=0.14) nor in version (p=0.91) of the stems. At 5 years TT for the cups (n=36) was mean 1.21 mm (sd 0.74) and TR was mean 2.63° (sd 1.71). Between 1–2 years cup migration along the z-axis was mean 0.29 (sd 0.73) (p=0.03), which was also within precision limits of the method. There was a positive association between total OHS below 40 (n=4) and cup migration (p=0.04), but no association between cup migration and metal ion levels >7ug/l (p=0.80), female gender (p=0.74), cup inclination > 50° (p=0.93), cup anteversion > 25° (p=0.88) or HHS < 90 (p=0.93). Proximal cup migration at 5 years was mean 0.46 mm (sd 0.47), which was similar to the cup migration at 1 year (p=0.91) and 2 years (p=0.80) follow-up. No patients were revised before the final 5–7 year follow-up. Patient satisfaction was high (94%). Conclusion. All cups and stems were well-fixed between 1–5 years. We found no statistical significant correlation between implant migration and other factors that have been associated with failure of MoM hip arthroplasty such as elevated metal ion levels, component position, and female gender. Cup migration was higher in patients with a total OHS below 40. In conclusion, metal wear-debris does not seem to influence fixation of hip components in large-head MoM articulations at mid-term follow-up


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives. Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips. Methods. Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women. . Results. The difference between men and women in terms of anteversion was significant (p = 0.022). In 75% of hips, the natural orientation was outside the safe zone described by Lewinnek et al (anteversion 15° ± 10°; inclination 40° ± 10°). Conclusion. When using the natural acetabular orientation to guide component placement, it is important to be aware of the differences between men and women, and that in up to 75% of hips natural orientation may be out of what many consider to be a safe zone. Cite this article: Bone Joint Res 2015;4:6–10


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement. We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1703 - 1709
1 Dec 2010
Aoki H Nagao Y Ishii S Masuda T Beppu M

In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the neck-shaft angle was defined as the lateral instability index (LII), and the sum of the anterior opening angle of the acetabulum and the anteversion angle of the femoral neck as the anterior instability index (AII). These two indices were compared in dysplastic and unaffected hips. A total of 22 unilateral hips with pre-arthrosis were followed for at least 15 years to determine whether the two indices were associated with the progression of osteoarthritis. The LII of the affected hips (197.4 (. sd. 6.0)) was significantly greater than that of the unaffected hips (1830 (. sd. 6.9)). A follow-up study of 22 hips with pre-arthrosis showed that only the LII was associated with progression of the disease, and an LII of 196 was the threshold value for this progression


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 972 - 975
1 Jul 2006
Spencer JMF Day RE Sloan KE Beaver RJ

Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component. A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points. The difference between the surgeons was found to be highly significant (p < 0.001). The variation was significantly larger for anteversion (. sd. 9.6°) than for inclination (. sd. 6.3°). The present method for registering pelvic landmarks shows significant inaccuracy, which highlights the need for improved methods of registration before this technique is considered to be safe


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 42 - 42
1 Apr 2018
Western L Logishetty K Morgan R Cobb J Auvinet E
Full Access

Background. Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill. Methods. Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the orientation of acetabular cup implants and displayed this in the participant”s field of view. The system calculated the difference between planned and achieved orientation as a solid-angle error. Six different inclination and anteversion combinations, related to hypothetical patient-specific anatomy, were used as target orientations. Learning curves were measured over four sessions, each one week apart. Error in orientations of non-taught angles and during a concealed pelvic tilt were measured to assess translation of skills. A post-test questionnaire was used for qualitative analysis of procedure understanding and participant experience. Results. Novice surgeons of similar experience in both groups performed with a similar error prior to training (ES: 15.7°±6.9°, EAR: 14.2°±7.1°, p>0.05). During training, EAR participants were guided to significantly better orientation errors than ES (ES: 6.0°±3.4°, EAR: 1.1°±0.9°, p<0.001). After four training sessions, the orientation error in both groups significantly reduced (ES: 15.7°±6.9° to 8.2°±4.6°, p<0.001; EAR: 14.2°±7.0° to 9.6°±5.7°, p<0.001). Participants in both groups achieved the same levels of orientation accuracy in non-taught angles and when the pelvis was tilted (p>0.05). In post-training evaluation, participants expressed a preference towards ES rather than EAR for learning orientation skills and related visuospatial and procedure-specific skills. 79% of participants indicated EAR simulator training and ES in combination would be their preferred training method. Discussion. A novel head-mounted EAR platform delivered training to novice surgeons more accurately than an expert surgeon. Both EAR and ES enabled novices to acquire and retain skills on a learning curve to orientate the implant. These skills were translated to non-taught orientations and in the presence of a pelvic tilt. Conclusions. Augmented-reality simulators may be a feasible and valid method for teaching novice surgeon”s visuospatial skills for THA on a learning curve, to compliment traditional intraoperative training


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 711 - 719
1 Jul 1998
Sugano N Noble PC Kamaric E Salama JK Ochi T Tullos HS

We studied the morphometry of 35 femora from 31 female patients with developmental dysplasia of the hip (DDH) and another 15 from 15 age- and sex-matched control patients using CT and three-dimensional computer reconstruction models. According to the classification of Crowe et al 15 of the dysplastic hips were graded as class I (less than 50% subluxation), ten as class II/III (50% to 100% subluxation) and ten as class IV (more than 100% subluxation). The femora with DDH had 10 to 14° more anteversion than the control group independent of the degree of subluxation of the hip. In even the most mildly dysplastic joints, the femur had a smaller and more anteverted canal than the normal control. With increased subluxation, additional abnormalities were observed in the size and position of the femoral head. Femora from dislocated joints had a short, anteverted neck associated with a smaller, narrower, and straighter canal than femora of classes I and II/III or the normal control group. We suggest that when total hip replacement is performed in the patient with DDH, the femoral prosthesis should be chosen on the basis of the severity of the subluxation and the degree of anteversion of each individual femur


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 97 - 97
1 Apr 2017
Bohler I Malek N Vane A
Full Access

Background. Positioning of the acetabular component in total hip arthroplasty has profound effects on the biomechanics, stability and wear of the prosthesis. Normal anatomical position in females is 57 degrees (50 – 67 degrees) inclination with 19 degrees (9 – 32 degrees) of anteversion, whilst in males 56 degrees of inclination (48 – 66 degrees) with 19 degrees (9 – 32 degrees) is normal. In total hip arthroplasty, inclination recommendation ranges from 30 – 50 degrees. The aim of this study was to radiographically measure acetabular component position in total hip arthroplasty and compare to normal values. Method. The Widmer method was used by two independent observers to radiographically measure inclination in 522 patients using standard AP radiographs. Primary measures and variables were statistically analysed as was inter and intra observer reliability. All patients included within the study received total hip arthroplasty for age related degenerative changes to the hip. Operations were undertaken by 17 separate consultants or senior registrars under their care. Results. Overall mean inclination was measured at 45.27 degrees with a range of 26 – 68 degrees. Statistically significant differences were observed between cemented 45.9o and non-cemented hips 43.9 degrees (p= 0.018), Simple 45.5 degrees vs complex 42.1 degrees (p=0.003) and Male 44.3 degrees vs Female 46.2 degrees (p=0.0198). No statistical difference was seen between consultant and registrar (p=0.211) and right vs left (p=0.768). Inter observer reliability was seen to be 0.91 whilst intra observer reliability 0.96. Conclusion. Although a large range of outcomes were observed, 95% of radiographs reviewed fell within a range of 33.6 – 56.9 degrees Variables such as surgical positioning, patient anatomy/body habitus, surgical technique, instrumentation likely influenced abnormal results. Abnormal positioning may have effects such as eccentric wear and dislocation, however, and such findings are yet to be observed in the study group


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted. When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions. The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles. The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3)